Napredna pretraga

Pregled bibliografske jedinice broj: 436934

Intrinsic boundary conditions for Friedrichs systems


Antonić, Nenad; Burazin, Krešimir
Intrinsic boundary conditions for Friedrichs systems // Communications in partial differential equations, 35 (2010), 9; 1690-1715 doi:10.1080/03605300903540927 (međunarodna recenzija, članak, znanstveni)


Naslov
Intrinsic boundary conditions for Friedrichs systems

Autori
Antonić, Nenad ; Burazin, Krešimir

Izvornik
Communications in partial differential equations (0360-5302) 35 (2010), 9; 1690-1715

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Symmetric positive system; first-order system of pde's; Kre\u\i n space; boundary operator

Sažetak
The admissible boundary conditions for symmetric positive systems of first-order linear partial differential equations, originally introduced by Friedrichs (1958), were recently related to three different sets of intrinsic geometric conditions in graph spaces (Ern, Guermond and Caplain, 2007). We rewrite their cone formalism in terms of an indefinite inner product space, which in a quotient by its isotropic part gives a Kre\u\i n space. This new viewpoint allows us to show that the three sets of intrinsic boundary conditions are actually equivalent, which will hopefully facilitate further investigation of their precise relation to the original Friedrichs boundary conditions.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekt / tema
037-0372787-2795 - Titrajuća rješenja parcijalnih diferencijalnih jednadžbi (Nenad Antonić, )
037-1193086-3226 - Matematičko modeliranje geofizičkih pojava (Marko Vrdoljak, )

Ustanove
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Sveučilište u Osijeku, Odjel za matematiku

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka:


  • MathSciNet


Citati