Napredna pretraga

Pregled bibliografske jedinice broj: 418517

Generating a Morphological Lexicon of Organization Entity Names


Ljubešić, Nikola; Lauc, Tomislava; Boras, Damir
Generating a Morphological Lexicon of Organization Entity Names // Proceedings of the Sixth International Language Resources and Evaluation (LREC'08) / Nicoletta Calzolari (Conference Chair), Khalid Choukri, Bente Maegaard, Joseph Mariani, Jan Odjik, Stelios Piperidis, Daniel Tapias (ur.).
Marrakech, Morocco: European Language Resources Association (ELRA), 2008. (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


Naslov
Generating a Morphological Lexicon of Organization Entity Names

Autori
Ljubešić, Nikola ; Lauc, Tomislava ; Boras, Damir

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the Sixth International Language Resources and Evaluation (LREC'08) / Nicoletta Calzolari (Conference Chair), Khalid Choukri, Bente Maegaard, Joseph Mariani, Jan Odjik, Stelios Piperidis, Daniel Tapias - Marrakech, Morocco : European Language Resources Association (ELRA), 2008

ISBN
2-9517408-4-0

Skup
Sixth International Language Resources and Evaluation Conference

Mjesto i datum
Marakeš, Maroko, 28-30.5.2008

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Morphological lexicon; lexicon generation; organization entity names; linear successive abstraction

Sažetak
This paper describes methods used for generating a morphological lexicon of organization entity names in Croatian. This resource is intended for two primary tasks: template-based natural language generation and named entity identification. The main problems concerning the lexicon generation are high level of inflection in Croatian and low linguistic quality of the primary resource containing named entities in normal form. The problem is divided into two subproblems concerning single- word and multi-word expressions. The single-word problem is solved by training a supervised learning algorithm called linear successive abstraction. With existing common language morphological resources and two simple hand-crafted rules backing up the algorithm, accuracy of 98.70% on the test set is achieved. The multi-word problem is solved through a semi- automated process for multi-word entities occurring in the first 10, 000 named entities. The generated multi-word lexicon will be used for natural language generation only while named entity identification will be solved algorithmically in forthcoming research. The single-word lexicon is capable of handling both tasks.

Izvorni jezik
Engleski

Znanstvena područja
Informacijske i komunikacijske znanosti



POVEZANOST RADA


Projekt / tema
130-1301679-1380 - Hrvatska rječnička baština i hrvatski europski identitet (Damir Boras, )
130-1301799-1999 - Oblikovanje i upravljanje javnim znanjem u informacijskom prostoru (Miroslav Tuđman, )

Ustanove
Filozofski fakultet, Zagreb