Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 394947

The prediction of the microstructure constituents of spheroidal graphite cast iron by using thermal analysis and artificial neural networks


Glavaš, Zoran; Unkić, Faruk; Lisjak, Dragutin
The prediction of the microstructure constituents of spheroidal graphite cast iron by using thermal analysis and artificial neural networks // Archives of metallurgy and materials, 55 (2010), 1; 247-253 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 394947 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
The prediction of the microstructure constituents of spheroidal graphite cast iron by using thermal analysis and artificial neural networks

Autori
Glavaš, Zoran ; Unkić, Faruk ; Lisjak, Dragutin

Izvornik
Archives of metallurgy and materials (1733-3490) 55 (2010), 1; 247-253

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
spheroidal graphite cast iron ; microstructure constituents ; thermal analysis ; artificial neural networks

Sažetak
This paper presents the application of artificial neural networks in the production process of spheroidal graphite cast iron. Backpropagation neural networks have been established to predict the microstructure constituents (ferrite content, pearlite content, nodule count and nodularity) of spheroidal graphite cast iron using the thermal analysis parameters as inputs. Generalization properties of the developed artificial neural networks are very good, which is confirmed by a very good accordance between the predicted and the targeted values of the microstructure constituents on a new data set that was not included in the training data set.

Izvorni jezik
Engleski

Znanstvena područja
Metalurgija



POVEZANOST RADA


Projekti:
124-0000000-1503 - Skrućivanje metalnih odljevaka (Unkić, Faruk, MZOS ) ( POIROT)
120-1201780-1779 - Modeliranje svojstava materijala i parametara procesa (Filetin, Tomislav, MZOS ) ( POIROT)

Ustanove:
Fakultet strojarstva i brodogradnje, Zagreb,
Metalurški fakultet, Sisak

Profili:

Avatar Url Dragutin Lisjak (autor)

Avatar Url Faruk Unkić (autor)

Poveznice na cjeloviti tekst rada:

imim.pl

Citiraj ovu publikaciju:

Glavaš, Zoran; Unkić, Faruk; Lisjak, Dragutin
The prediction of the microstructure constituents of spheroidal graphite cast iron by using thermal analysis and artificial neural networks // Archives of metallurgy and materials, 55 (2010), 1; 247-253 (međunarodna recenzija, članak, znanstveni)
Glavaš, Z., Unkić, F. & Lisjak, D. (2010) The prediction of the microstructure constituents of spheroidal graphite cast iron by using thermal analysis and artificial neural networks. Archives of metallurgy and materials, 55 (1), 247-253.
@article{article, year = {2010}, pages = {247-253}, keywords = {spheroidal graphite cast iron, microstructure constituents, thermal analysis, artificial neural networks}, journal = {Archives of metallurgy and materials}, volume = {55}, number = {1}, issn = {1733-3490}, title = {The prediction of the microstructure constituents of spheroidal graphite cast iron by using thermal analysis and artificial neural networks}, keyword = {spheroidal graphite cast iron, microstructure constituents, thermal analysis, artificial neural networks} }
@article{article, year = {2010}, pages = {247-253}, keywords = {spheroidal graphite cast iron, microstructure constituents, thermal analysis, artificial neural networks}, journal = {Archives of metallurgy and materials}, volume = {55}, number = {1}, issn = {1733-3490}, title = {The prediction of the microstructure constituents of spheroidal graphite cast iron by using thermal analysis and artificial neural networks}, keyword = {spheroidal graphite cast iron, microstructure constituents, thermal analysis, artificial neural networks} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus





Contrast
Increase Font
Decrease Font
Dyslexic Font