Napredna pretraga

Pregled bibliografske jedinice broj: 380351

Mappings Connected with Hermite-Hadamard Inequalities for Superquadratic Functions


Banić, Senka
Mappings Connected with Hermite-Hadamard Inequalities for Superquadratic Functions // Mathematical inequalities and applications 2008 : conference in honour of Professor Josip Pečarić on the occasion of his 60th birthday : book of abstracts / Čižmešija, Aleksandra ; Varošanec, Sanja (ur.).
Zagreb: Element, 2008. str. 35-35 (predavanje, međunarodna recenzija, sažetak, znanstveni)


Naslov
Mappings Connected with Hermite-Hadamard Inequalities for Superquadratic Functions

Autori
Banić, Senka

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
Mathematical inequalities and applications 2008 : conference in honour of Professor Josip Pečarić on the occasion of his 60th birthday : book of abstracts / Čižmešija, Aleksandra ; Varošanec, Sanja - Zagreb : Element, 2008, 35-35

Skup
Mathematical inequalities and applications 2008

Mjesto i datum
Trogir, Hrvatska, 8-14.06.2008.

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Hermite-Hadamard inequality; convex functions; superquadratic functions

Sažetak
We consider two mappings H, F:[0, 1]→ R connected with Hermite-Hadamard inequality and defined by integrals, which were introduced and considered by Y.J. Cho, M. Matić and J. Pečarić (Panamer. Math. J., 2002) for the convex integrand ϕ . Convexity and some other properties have been established for these two mappings. In distinction from the convex case, superquadracity is not hereditary. If ϕ is superquadratic function, mappings H and F are not superquadratic in general, but we established some other properties and inequalities which refine results of Cho, Matić and Pečarić. In the special case we get refinements of some results of S.S. Dragomir (J. Math. Anal. Appl., 1992)) and some results of M. Akkouchi (Facta Univ. Ser. Math. Inform., 2002)).

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekt / tema
177-1170889-1287 - Konveksne funkcije i primjene (Marko Matić, )

Ustanove
Fakultet građevinarstva, arhitekture i geodezije, Split,
Prirodoslovno-matematički fakultet, Split

Autor s matičnim brojem:
Senka Banić, (220726)