Napredna pretraga

Pregled bibliografske jedinice broj: 376334

Non-homogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: a local existence theorem


Mujaković, Nermina
Non-homogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: a local existence theorem // Annali dell'Universita di Ferrara, 53 (2007), 2; 361-379 (međunarodna recenzija, članak, znanstveni)


Naslov
Non-homogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: a local existence theorem

Autori
Mujaković, Nermina

Izvornik
Annali dell'Universita di Ferrara (0430-3202) 53 (2007), 2; 361-379

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Micropolar fluid; Generalized solution; Weak and strong convergences

Sažetak
An initial-boundary value problem for 1-D flow of a compressible viscous heat-conducting micropolar fluid is considered ; the fluid is assumed thermodynamically perfect and polytropic. The original problem is transformed into homogeneous one and studied the Faedo-Galerkin method. A local-in-time existence of generalized solution is proved.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekt / tema
037-0693014-2765 - Matematička analiza kompozitnih i tankih struktura (Zvonimir Tutek, )

Ustanove
Filozofski fakultet, Rijeka

Autor s matičnim brojem:
Nermina Mujaković, (206962)

Časopis indeksira:


  • Scopus


Uključenost u ostale bibliografske baze podataka:


  • MathSciNet
  • Zentrallblatt für Mathematik/Mathematical Abstracts