Napredna pretraga

Pregled bibliografske jedinice broj: 376187

Non-homogeneous boundary value problem for one-dimensional micropolar fluid model with rapidly variable initial conditions


Dražić, Ivan; Mujaković Nermina
Non-homogeneous boundary value problem for one-dimensional micropolar fluid model with rapidly variable initial conditions // 4th Croatian Mathematical Congress
Osijek, Hrvatska, 2008. (poster, međunarodna recenzija, sažetak, znanstveni)


Naslov
Non-homogeneous boundary value problem for one-dimensional micropolar fluid model with rapidly variable initial conditions

Autori
Dražić, Ivan ; Mujaković Nermina

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
4th Croatian Mathematical Congress / - , 2008

Skup
4th Croatian Mathematical Congress

Mjesto i datum
Osijek, Hrvatska, 17. - 20.6.2008

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Micropolar fluid; homogenization; strong solution

Sažetak
We consider nonstationary 1-D flow of a micropolar viscous compressible fluid, which is in a thermodynamic sense perfect and polytropic. Assuming that the velocity and microrotation satisfy the non-homogeneous boundary conditions and that the initial data for the specific volume, velocity, microrotation velocity and temperature are rapidly variable functions, we find out the homogenized model of the considered flow. This result is obtained by the method of two-scale asymptotic expansion.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekt / tema
037-0693014-2765 - Matematička analiza kompozitnih i tankih struktura (Zvonimir Tutek, )

Ustanove
Tehnički fakultet, Rijeka