Napredna pretraga

Pregled bibliografske jedinice broj: 375995

Perturbation of the Wigner equation in inner product C*-modules


Chmielinski, Jacek; Ilišević, Dijana; Sal Moslehian, Mohammad; Sadeghi, Ghadir
Perturbation of the Wigner equation in inner product C*-modules // Journal of Mathematical Physics, 49 (2008), 3; 33519-1 doi:10.1063/1.2898486 (međunarodna recenzija, članak, znanstveni)


Naslov
Perturbation of the Wigner equation in inner product C*-modules

Autori
Chmielinski, Jacek ; Ilišević, Dijana ; Sal Moslehian, Mohammad ; Sadeghi, Ghadir

Izvornik
Journal of Mathematical Physics (0022-2488) 49 (2008), 3; 33519-1

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Wigner equation; C*-modules

Sažetak
Let $\A$ be a $C^*$-subalgebra of a von Neumann algebra $\B$. Let $\M$ and $\N$ be inner product modules over $\A$ and $\B$, respectively. Under some assumptions we show that for each mapping $f\colon{; ; \mathcal M}; ; \to {; ; \mathcal N}; ; $ satisfying $$\|\, |\ip{; ; f(x)}; ; {; ; f(y)}; ; |-|\ip{; ; x}; ; {; ; y}; ; |\, \|\leq\varphi(x, y)\qquad (x, y\in{; ; \mathcal M}; ; ), $$ where $\varphi$ is a control function, there exists a solution $I\colon{; ; \mathcal M}; ; \to {; ; \mathcal N}; ; $ of the Wigner equation $$|\ip{; ; I(x)}; ; {; ; I(y)}; ; |=|\ip{; ; x}; ; {; ; y}; ; |\qquad (x, y \in {; ; \mathcal M}; ; )$$ such that $$ \|f(x)-I(x)\|\leq\sqrt{; ; \varphi(x, x)}; ; \qquad (x\in {; ; \mathcal M}; ; ). $$

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekt / tema
037-0372784-2757 - Preslikavanja na modulima nad prstenima, apstraktnim i operatorskim algebrama (Dijana Ilišević, )

Ustanove
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb

Autor s matičnim brojem:
Dijana Ilišević, (228992)

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka:


  • MathSciNet
  • Zentrallblatt für Mathematik/Mathematical Abstracts


Citati