Pregled bibliografske jedinice broj: 369922
Classification accuracy of algorithms for blood chemistry data of three aquaculture-influenced marine fish species
Classification accuracy of algorithms for blood chemistry data of three aquaculture-influenced marine fish species // Fish Physiology and Biochemistry, 35 (2009), 4; 641-647 doi:10.1007/s10695-008-9288-0 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 369922 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Classification accuracy of algorithms for blood chemistry data of three aquaculture-influenced marine fish species
Autori
Čož-Rakovac, Rozelinda ; Topić Popović, Natalija ; Šmuc, Tomislav ; Strunjak-Perović, Ivančica ; Jadan, Margita
Izvornik
Fish Physiology and Biochemistry (0920-1742) 35
(2009), 4;
641-647
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
machine learning techniques; sea bass; sea bream; mullet; plasma biochemistry
Sažetak
The aim of this study was determination and discrimination of biochemical data between three aquaculture-influenced marine fish species (sea bass, Dicentrarchus labrax ; sea bream, Sparus aurata L ; mullet, Mugil spp.) based on machine learning methods. The approach relying on machine learning methods gives more usable classification solutions and provides better insight into the collected data. So far, these new methods were applied to the problem of discrimination of blood chemistry data with respect to season and feed of one single species. This is the first time that these classification algorithms were used as a framework for rapid differentiation between three fish species. Among the machine learning methods used, decision trees provided the clearest model, which correctly classified 210 samples or 85.71 %, and incorrectly classified 35 samples or 14.29 % and clearly identified three investigated species regarding to their biochemical traits.
Izvorni jezik
Engleski
Znanstvena područja
Biologija, Veterinarska medicina, Poljoprivreda (agronomija)
POVEZANOST RADA
Projekti:
098-0000000-3168 - Strojno učenje prediktivnih modela u računalnoj biologiji (Šmuc, Tomislav, MZOS ) ( CroRIS)
098-1782739-2749 - Substanična biokemijska i filogenetska raznolikost tkiva riba, rakova i školjaka (Čož-Rakovac, Rozelinda, MZO ) ( CroRIS)
Ustanove:
Institut "Ruđer Bošković", Zagreb
Profili:
Ivančica Strunjak-Perović
(autor)
Natalija Topić Popović
(autor)
Margita Jadan
(autor)
Rozelinda Čož-Rakovac
(autor)
Tomislav Šmuc
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE