
RegExpert: A Tool for Visualization of Regular
Expressions

Ivan Budiselic*, Sinisa Srbljic* and Miroslav Popovic*
* University of Zagreb, School of Electrical Engineering and Computing, Zagreb, Croatia,

e-mail: {ivan.budiselic, sinisa.srbljic, miro.popovic}@fer.hr

Abstract—In recent years, tools for computer aided
learning have become widespread on all levels of education.
These tools are used as replacements or additions to
traditional methods of instruction, in order to reduce the
time students require to absorb the taught course. On the
other hand, these tools ease the burden of course lecturers
when preparing complex examples since these can be
created and executed in real time and then analyzed in class.

To increase the interactivity of computer science
education, we have developed RegExpert, a tool for regular
language manipulation and visualization. The main goal of
the RegExpert tool is to simplify and visually present
complex concepts and mathematical models of automata
theory fundamentals. RegExpert converts user defined or
automatically generated regular expression to an equivalent
NFA-epsilon (nondeterministic finite automaton with
epsilon transitions) and presents it to the user in a form of
state diagram. In this paper, we present the structure and
implementation of the tool, as well as the ideas for future
development.

Keywords—computer aided learning, automata theory,
regular languages, regular expressions

I. INTRODUCTION
The ever-growing complexity of computer science

leaves less and less time in the curriculum to cover
fundamentals such as finite state automata and regular
languages. The very high level of abstraction of the theory
makes it difficult to motivate the students and get them
interested in the presented course material. Covering
various formal models, such as DFA (deterministic finite
automaton), NFA (nondeterministic FA), NFA-epsilon
(NFA with epsilon transitions), regular expressions, and
regular grammars, is important since each embodies a
different approach to the same problem and as such offers
a richer toolbox to the student. This only leaves time to
cover one or two very basic examples, and these are
usually too simple to awe the students or to make them
appreciate the importance of the model. The students are
then forced to make up example problems of their own,
often unable to solve them or even verify their solutions.

This problem is further emphasized by today’s
employment policies. Most potential employers are likely
to ask the students which programming languages they are
familiar with, but not very likely to ask if they understand
state machines. However, to fully understand
programming languages and how they are compiled into
executable code, one must at least have basic knowledge
of automata theory, mainly finite state machines and
regular languages.

We have developed the RegExpert tool to help both
students and lecturers. The tool generates regular
expressions of different complexity and converts them
into corresponding NFA-epsilon. The conversion
algorithm used within the tool is explained in every course
that deals with automata theory, since it is a proof by
construction that every regular expression can be
converted to a finite state machine that accepts the
language the expression defines [1].

The tool allows students to experiment with various
regular expressions and see how the changes made affect
the resulting NFA-epsilon. Learning through
experimentation is proven to be one of the most efficient
ways of education, since the best way to understand an
algorithm or method is to see it applied on a live example.

Furthermore, the tool also enables the lecturer to make
the lecture more interesting, for example allowing the
students to pick the regular expression used for the
conversion. The lecturer can also skip the detailed
description of every step of the algorithm, since the
students can easily analyze the steps from the listing at
their convenience. RegExpert allows easy construction of
different problems of approximately the same difficulty
for tests and verification of the students’ solutions.

In Section 2, we briefly elaborate current state of the art
in the field of computer aided learning. Section 3
describes the structure of the RegExpert tool and discusses
the implementation. We conclude the paper in Section 4
giving a summary of the possible applications and future
extensions of RegExpert.

II. RELATED WORK
Computer aided learning tools are today available for

almost any field of science. One of the most popular such
tools, used extensively in both education and research, is
Mathematica [2]. Mathematica provides a high-level,
interpreted programming language, and offers vast
numerical and graphical libraries. The tool also contains
Combinatorica [3], a collection of over 450 algorithms for
discrete mathematics and graph theory.

Simpler, non-commercial tools are also available on the
Web. For example, detailed animations of the basic
sorting algorithms as well as the source code used can be
found at [4]. For computer networks, animations of the
various data-link layer protocols can be found at [5].

In the field of regular languages and automata theory,
several notable tools exist. FIRE engine [6] is a C++ class
library implementing finite automata and regular
expression algorithms. Grail+ [7] is a symbolic
computation environment for finite-state machines,
regular expressions, and other formal language theory

EUROCON 2007 The International Conference on “Computer as a Tool” Warsaw, September 9-12

1-4244-0813-X/07/$20.00 2007 IEEE. 2387

objects. Using Grail+, one can input machines or
expressions, convert them from one form to another,
minimize them, complement them, and make them
deterministic. JFLAP [8] is software for experimenting
with formal language topics including nondeterministic
finite automata, nondeterministic pushdown automata,
multi-tape Turing machines, several types of grammars,
parsing, and L-systems. In addition to constructing and
testing examples for these, JFLAP allows one to
experiment with construction proofs from one form to
another, such as converting an NFA to a DFA to a
minimal state DFA to a regular expression or regular
grammar.

RegExpert is not the first e-learning tool developed at
the University of Zagreb. Prior to RegExpert, we have
developed Automata Simulator [9] and SoftLab [10], both
applicable in the field of automata theory fundamentals.
Automata Simulator offers interactive generation and
simulation of finite state machines. It supports all types of
finite state machines: automata with binary output (DFA,
NFA, and NFA-epsilon) and automata with general output
(Moore and Mealy automata). Softlab is an extension of
Automata Simulator towards a fully distributed e-learning
tool. It allows better interaction between the student and
the supervisor as the supervisor can monitor the student’s
progress and even assist in modeling more complex
examples.

III. THE REGEXPERT TOOL
The structure of the RegExpert tool is shown in Fig. 1.

The tool consists of four main components: the user
input/output interface, the regular expression generator,
the converter of regular expressions to NFA-epsilon, and
the Graphviz. RegExpert users input regular expressions
either manually or using RegEx Generator, which
generates regular expressions automatically. The former
approach is useful to students for evaluating their
paperwork solutions, while the latter approach allows for
experimentation with different classes of expressions and
helps lecturers to prepare student assignments.

Fig 1. RegExpert structure

Fig. 2. Configuration settings for generation of regular expressions

The RegEx-to-NFAe Converter transforms the input
regular expression to a NFA-epsilon presented in the
Graphviz dot language [11, 12]. The Graphviz dot
language is a textual language for representing graphs and
was chosen over a classical table representation since it
allows for easy conversion to a state diagram. The dot
language is simple enough to efficiently generate and to
read out the table representation if necessary. Finally,
Graphviz is used to convert the dot file to a gif image that
depicts the state diagram of the generated NFA-epsilon.

The format and complexity of automatically generated
regular expressions may be controlled using the RegExgen
Configuration panel, as shown in Fig. 2. Input symbols
consist of a single character from the specified Input
alphabet. The Character number option roughly dictates
the size of the expression. If the expression is split with
the choice operator ‘+’, the left-hand and right-hand
expressions get the character number of the whole
expression multiplied by the Size reduction factor.
Therefore, it is imperative to keep the size reduction factor
strictly less than one, in order to guarantee algorithm
termination. The occurrence of the choice operator ‘+’ is
controlled by the Or probability setting. The final two
options, Arbitrary repetition probability and Appearance
with arbitrary repetition probability, determine the
frequency of repetition operators in the generated
expression. The standard regular expression syntax for
appearance with arbitrary repetition (expression)+ is
replaced with (expression)# to avoid ambiguity with the
choice operator ‘+’.

Fig. 3 presents the main RegExpert panel. The
‘Generate RegEx’ button invokes the regular expression
generator, and writes the generated expression into the
text field. Alternatively, the user can edit the text field
manually. The ‘RegEx -> NFAe’ button converts the
regular expression from the text field to the corresponding
NFA-epsilon. In the resulting graph representing the
NFA-epsilon state machine, epsilon transitions are marked
with ‘$’, the leftmost node of the graph is the starting state
of the automaton, while the rightmost node is the single
accepting state.

The conversion of the regular expression to the
equivalent NFA-epsilon is done using a slightly modified
algorithm from [1]. The structure of the state machine is
not altered in any way, so the various steps of the
algorithm are apparent in the image.

2388

Fig. 3. Main RegExpert panel

The appearance with arbitrary repetition operator ‘#’ is
converted to the appearance with an arbitrary repetition
operator ‘*’ using the rule

(expression)# = (expression)(expression)*

If the expression is a single input symbol or the empty
string, two states are generated for that expression: a
starting state S, and an accepting state A. A single
transition from the starting to the accepting state is added
and marked with the input symbol.

If the expression does not contain any top-level choice
operator ‘+’, then the sub expressions are processed
recursively from left to right. An epsilon transition from
the accepting state of the left expression’s NFA-epsilon to
the starting state of the right expression’s NFA-epsilon is
added. The starting state of the whole expression’s NFA-
epsilon is the starting state of the leftmost sub
expression’s NFA-epsilon, while the only accepting state
is the accepting state of the rightmost sub expression’s
NFA-epsilon. In Fig. 3, the expression ab(c+d)* is
separated into sub expressions a, b, and (c+d)*.

If an expression does contain a top-level choice
operator ‘+’, it is separated into sub expressions that do
not. They are processed recursively, and two states S’ and
A’ are added. For every sub expression, an epsilon
transition is added from S’ to the starting state of the sub
expression’s NFA-epsilon and from its accepting state to
A’. S’ and A’ are then made the starting and accepting
state of the NFA-epsilon for the whole expression,
respectively. In Fig. 3, the expression (c+d) is separated
into c and d. States q4 and q5 are added and connected to
the sub expression’s automata as described above.

Finally, if the expression is followed by an arbitrary
repetition operator ‘*’, two epsilon transitions are added:
one from the start state to the accepting state and another
one in the reverse direction. The epsilon transitions from
q4 to q5 and vice versa in Fig. 3 are examples of such
transitions. The listing of all the important steps done by
the program during the conversion can be seen in the
Conversion log panel.

The graph representing a state diagram of a NFA-
epsilon generated by this algorithm is planar, since each of
its sub graphs is planar. This enables drawing the state
diagram in a screen convenient way, without edge
intersections and node collisions. Since the equivalent
DFA in general does not retain planarity, this was the
primary reason why we have chosen the NFA-epsilon as a
visual representation of regular languages.

IV. CONCLUSION
In this paper, we presented RegExpert, a tool for

interactive learning of regular languages. The objective of
the tool is to make the learning process entertaining and
simple for students, while lessening the burden of problem
and example preparation for the lecturers. Our experiences
from the development of Automata Simulator [9] and
SoftLab [10], and their application in computer science
curriculum at the University of Zagreb encourage us to
further advance the education by applying the RegExpert
tool in Introduction to Theory of Computation course.

A further step in improving the tool and making it
classroom-ready is implementation of conversions
between basic models of finite state machines (NFA-
epsilon, NFA, and DFA), as well as implementation of
DFA minimization. Since drawing nonplanar graphs in a
visually pleasant way is difficult to define precisely and
for almost any definition the problem is NP-complete, we
propose a table form as an initial representation of these
state machines.

REFERENCES
[1] S. Srbljic, Compiler Design 1: Introduction to Theory of Formal

Languages, Automata, and Grammars, (original title in Croatian:
“Jezicni procesori 1: uvod u teoriju formalnih jezika, automata i
gramatika”), 2nd Edition, Element, Zagreb, 2002, pp. 46-50.

[2] S. Wolfram, The Mathematica Book, 5th Edition, Wolfram Media,
2003.

[3] S. Pemmaraju and S. Skiena, Computational Discrete
Mathematics: Combinatorics and Graph Theory with
Mathematica, Cambridge University Press, 2003.

[4] B. Kaneva and D. Thiébaut, “Sorting algorithms,” Smith College,
http://maven.smith.edu/~thiebaut/java/sort/demo.html.

[5] A. Jacobsen, “Data-link network protocol simulation,” University
of Birmingham, School of Computer Science,
http://www.cs.bham.ac.uk/~gkt/Teaching/SEM335/dlsim/Simulati
on.html.

[6] B. W. Watson, “The design and implementation of the FIRE
engine: a C++ toolkit for finite automata and regular expressions,”
Computing Science Note 94/22, Eindhoven University of
Technology, Netherlands, 1994.

[7] Grail+ Project homepage,
http://www.csd.uwo.ca/Research/grail/index.html.

[8] S. H. Rodger and T. W. Finley, JFLAP: An Interactive Formal
Languages and Automata Package, Jones & Bartlett Publishers,
Sudbury, MA, 2006.

[9] I. Skuliber, S. Srbljic, and I. Crkvenac, “Using interactivity in
computer-facilitated learning for efficient comprehension of
mathematical abstractions,” Proceedings of the EUROCON 2001,
International Conference on Trends in Communication, Bratislava,
Slovak Republic, July, 2001, vol. 2/2, pp. 278-281.

[10] I. Skuliber, S. Srbljic, and A. Milanovic, “Extending the textbook:
a distributed tool for learning automata theory fundamentals,”
Proceedings of the 9th IEEE International Conference on
Electronics, Circuits and Systems (ICECS 2002), Dubrovnik,
Croatia, September, 2002.

[11] E. Gansner, E. Koutsofios, and S. North, “Drawing graphs with
dot”, January, 2006.
http://www.graphviz.org/Documentation/dotguide.pdf

[12] E. R. Gansner and S. C. North, “An open graph visualization
system and its application to software engineering”, Software –
Practice and Experience, vol. 30, no. 11, November 2000, pp.
1203-1233.

2389

	Main Menu
	ToC
	Sessions Schedule
	Author Index
	Go Back
	Search

