Napredna pretraga

## Global forcing number of grid graphs

Vukičević, Damir; Došlić, Tomislav
Global forcing number of grid graphs // Australasian Journal of Combinatorics, 38 (2007), 47-62 (međunarodna recenzija, članak, znanstveni)

Naslov
Global forcing number of grid graphs

Autori
Vukičević, Damir ; Došlić, Tomislav

Izvornik
Australasian Journal of Combinatorics (1034-4942) 38 (2007); 47-62

Ključne riječi
Global forcing number; grid graph

Sažetak
Let $G$ be a simple connected graph with a perfect matching. Let ${; ; ; \cal M}; ; ; (G)$ denote the set of all perfect matchings in $G$, and $f: {; ; ; \cal M}; ; ; (G) \rightarrow \{; ; ; 0, 1\}; ; ; ^{; ; ; |E(G)|}; ; ;$ a characteristic function of perfect matchings of $G$. Any set $S \subseteq E(G)$ such that $f \left | _S \right .$ is an injection is called a global forcing set in $G$, and the cardinality of smallest such $S$ is called the global forcing number of $G$. In this paper we first establish lower bounds on this quantity and show how it can be computed for certain classes of composite graphs, and then we prove an explicit formula for global forcing number of the grid graph $R_{; ; ; p, q}; ; ; = P_p \times P_q$. We also briefly consider a vertex global forcing number of grid graphs and present an explicit formula for it. In the last section we give explicit formulas for global forcing numbers of complete graphs and discuss some further developments.

Izvorni jezik
Engleski

Znanstvena područja
Matematika

Projekt / tema
037-0000000-2779 - Diskretna matematika i primjene (Dragutin Svrtan, )
177-0000000-0884 - Diskretni matematički modeli u kemiji (Damir Vukičević, )

Ustanove
Građevinski fakultet, Zagreb

• Scopus

• MathSciNet