Napredna pretraga

Pregled bibliografske jedinice broj: 325343

Approximate solution for 1-D compressible viscous micropolar fluid model in dependance of initial conditions


Dražić, Ivan; Mujaković, Nermina
Approximate solution for 1-D compressible viscous micropolar fluid model in dependance of initial conditions // International Journal of Pure and Applied Mathematics, 42 (2008), 4; 535-540 (podatak o recenziji nije dostupan, članak, znanstveni)


Naslov
Approximate solution for 1-D compressible viscous micropolar fluid model in dependance of initial conditions

Autori
Dražić, Ivan ; Mujaković, Nermina

Izvornik
International Journal of Pure and Applied Mathematics (1311-8080) 42 (2008), 4; 535-540

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Micropolar fluid; strong solution; numerical solution.

Sažetak
We consider a model for nonstationary 1-D flow of a compressible viscous heat-conducting micropolar fluid which is thermodynamically perfect and polytropic. A corresponding initial-boundary value problem has a unique strong solution on ]0, 1[×]0, T[, for each T > 0 and for sufciently small T this solution is a limit of approximate solutions which we get by the Faedo-Galerkin method. Using the initial functions in the form of Fourier expansions we analyze the numerical approximate solutions in dependance of number of terms in Fourier series.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekt / tema
037-0693014-2765 - Matematička analiza kompozitnih i tankih struktura (Zvonimir Tutek, )

Ustanove
Filozofski fakultet, Rijeka,
Tehnički fakultet, Rijeka

Uključenost u ostale bibliografske baze podataka:


  • MathSciNet
  • Zentrallblatt für Mathematik/Mathematical Abstracts