Napredna pretraga

Pregled bibliografske jedinice broj: 321254

Numerically Stable Algorithm for Cycloidal Splines


Bosner, Tina; Rogina, Mladen
Numerically Stable Algorithm for Cycloidal Splines // Annali dell'Università di Ferrara. Sezione 7: Scienze matematiche, 53 (2007), 2; 189-197 doi:10.1007/s11565-007-0016-y (međunarodna recenzija, članak, znanstveni)


Naslov
Numerically Stable Algorithm for Cycloidal Splines

Autori
Bosner, Tina ; Rogina, Mladen

Izvornik
Annali dell'Università di Ferrara. Sezione 7: Scienze matematiche (0430-3202) 53 (2007), 2; 189-197

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Chebyshev theory; cycloidal splines; knot insertion; generalized de Boor algorithm

Sažetak
We propose a knot insertion algorithm for splines that are piecewisely in L{; ; ; 1, x, sin(x), cos(x)}; ; ; . Since an ECC-system on [0, 2*pi] in this case does not exist, we construct a CCC--system by choosing the appropriate measures in the canonical representation. In this way, a B-basis can be constructed in much the same way as for weighted and tension splines. Thus we develop a corner cutting algorithm for lower order cycloidal curves, though a straightforward generalization to higher order curves, where ECC-systems exist, is more complex. The important feature of the algorithm is high numerical stability and simple implementation.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekt / tema
037-1193086-2771 - Numeričke metode u geofizičkim modelima (Saša Singer, )

Ustanove
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb

Autor s matičnim brojem:
Tina Bosner, (248575)
Mladen Rogina, (95213)

Časopis indeksira:


  • Scopus


Uključenost u ostale bibliografske baze podataka:


  • MathSciNet
  • Zentrallblatt für Mathematik/Mathematical Abstracts
  • Current Mathematical Publications
  • Mathematical Reviews


Citati