Napredna pretraga

Pregled bibliografske jedinice broj: 304045

Approximate solution for 1-D compressible viscous micropolar fluid model in dependence of initial conditions


Dražić, Ivan; Mujaković, Nermina
Approximate solution for 1-D compressible viscous micropolar fluid model in dependence of initial conditions // Fourth International Conference of Applied Mathematics and Computing, Volume 1 / Svetoslav Nenov (ur.).
Plovdiv, 2007. (pozvano predavanje, međunarodna recenzija, sažetak, znanstveni)


Naslov
Approximate solution for 1-D compressible viscous micropolar fluid model in dependence of initial conditions

Autori
Dražić, Ivan ; Mujaković, Nermina

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
Fourth International Conference of Applied Mathematics and Computing, Volume 1 / Svetoslav Nenov - Plovdiv, 2007

Skup
Fourth International Conference of Applied Mathematics and Computing

Mjesto i datum
Plovdiv, Bugarska, 12-18.08.2007

Vrsta sudjelovanja
Pozvano predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Micropolar fluid; strong solution; numerical solution

Sažetak
We consider a model for nonstationary 1-D flow of a compressible viscous heat-conducting micropolar fluid which is thermodynamically perfect and polytropic. A corresponding initial-boundary value problem has a unique strong solution on ]0, 1[x]0, T[, for each T>0 and for sufficiently small T this solution is a limit of approximate solutions which we get by the Faedo-Galerkin method. Using the initial functions in the form of Fourier expansions we analyze the numerical approximate solutions in dependance of number of terms in Fourier series.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekt / tema
037-0693014-2765 - Matematička analiza kompozitnih i tankih struktura (Zvonimir Tutek, )

Ustanove
Filozofski fakultet, Rijeka,
Tehnički fakultet, Rijeka