Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 299665

Transformation of surfaces in the pseudo-Galilean space


Milin Šipuš Željka; Divjak Blaženka
Transformation of surfaces in the pseudo-Galilean space // Conference on Geometry: Theory and Application / Jüttler B ; Röschel O. (ur.).
Graz: TU Graz, 2007. (predavanje, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 299665 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Transformation of surfaces in the pseudo-Galilean space

Autori
Milin Šipuš Željka ; Divjak Blaženka

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
Conference on Geometry: Theory and Application / Jüttler B ; Röschel O. - Graz : TU Graz, 2007

Skup
Conference on Geometry: Theory and Application

Mjesto i datum
Vorau, Austrija, 3-8.06.2007

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
sine-Gordon equation; Klein-Gordon equation; Galilean geometry

Sažetak
Study of surfaces for which a non-trivial relation between their Gaussian and mean curvature holds is a classical problem of Euclidean differential geometry introduced by Julius Weingarten in 1861. As a special case of these surfaces, surfaces of constant Gaussian curvature (CGC) and constant mean curvature (CMC) appear. Moreover, it is well-known fact that surfaces with negative Gaussian curvature can be determined as solutions of Sine-Gordon equation. This equation plays very important role in the soliton theory. In projective-metric spaces the analogous problem can be analyzed. We have treated the problem of Weingarten surfaces in the pseudo-Galilean geometry and obtained results analogous to those in Euclidean geometry concerning surfaces of revolution and ruled surfaces. Moreover, spacelike surfaces with negative Gaussian curvatures are connected to the Klein-Gordon equation. In order to further investigate Weingarten surfaces we have brought in transformation of surfaces in pseudo-Galilean space analogous to Bäcklund transformations in Euclidean geometry.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
016-0372785-0892 - Diferencijalna geometrija prostora s degeneriranim i indefinitnim metrikama (Divjak, Blaženka, MZOS ) ( POIROT)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb

Profili:

Avatar Url Željka Milin-Šipuš (autor)

Avatar Url Blaženka Divjak (autor)


Citiraj ovu publikaciju:

Milin Šipuš Željka; Divjak Blaženka
Transformation of surfaces in the pseudo-Galilean space // Conference on Geometry: Theory and Application / Jüttler B ; Röschel O. (ur.).
Graz: TU Graz, 2007. (predavanje, međunarodna recenzija, sažetak, znanstveni)
Milin Šipuš Željka & Divjak Blaženka (2007) Transformation of surfaces in the pseudo-Galilean space. U: Jüttler B & Röschel O. (ur.)Conference on Geometry: Theory and Application.
@article{article, year = {2007}, pages = {14}, keywords = {sine-Gordon equation, Klein-Gordon equation, Galilean geometry}, title = {Transformation of surfaces in the pseudo-Galilean space}, keyword = {sine-Gordon equation, Klein-Gordon equation, Galilean geometry}, publisher = {TU Graz}, publisherplace = {Vorau, Austrija} }
@article{article, year = {2007}, pages = {14}, keywords = {sine-Gordon equation, Klein-Gordon equation, Galilean geometry}, title = {Transformation of surfaces in the pseudo-Galilean space}, keyword = {sine-Gordon equation, Klein-Gordon equation, Galilean geometry}, publisher = {TU Graz}, publisherplace = {Vorau, Austrija} }




Contrast
Increase Font
Decrease Font
Dyslexic Font