Pregled bibliografske jedinice broj: 276142
Adaptivna shema podizanja za neseparabilne dvodimenzionalne valićne transformacije
Adaptivna shema podizanja za neseparabilne dvodimenzionalne valićne transformacije, 2006., doktorska disertacija, Fakultet elektrotehnike i računarstva, Zagreb
CROSBI ID: 276142 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Adaptivna shema podizanja za neseparabilne dvodimenzionalne valićne transformacije
(Adaptive Lifting Scheme for Nonseparable Two-Dimensional Wavelet Transforms)
Autori
Vrankić, Miroslav
Vrsta, podvrsta i kategorija rada
Ocjenski radovi, doktorska disertacija
Fakultet
Fakultet elektrotehnike i računarstva
Mjesto
Zagreb
Datum
06.07
Godina
2006
Stranica
165
Mentor
Seršić, Damir
Ključne riječi
valićne transformacije; adaptivni filtri; valići druge generacije; adaptivna shema podizanja; quincunx uzorkovanje; interpolacijski filtri; presjecište intervala pouzdanosti; uklanjanje šuma iz slike
(wavelet transforms; adaptive filters; second generation wavelets; adaptive lifting scheme; quincunx sampling; interpolating filters; intersection of confidence intervals; image denoising)
Sažetak
In this thesis, we propose the novel adaptive wavelet filter bank structures that are used to obtain efficient representations of the analyzed images. We present the lifting scheme structures for building adaptive wavelet decompositions based on the nonseparable quincunx sampling scheme. The resulting wavelet decompositions are adaptive to the local properties of the analyzed image. Despite the introduced adaptation, a desired number of vanishing moments is still retained. The proposed adaptation is performed in order to minimize the energy of detail coefficients on a neighborhood of each pixel of the analyzed image. The appropriate neighborhood is determined for each pixel separately by using the intersection of confidence intervals (ICI) rule. The application of the ICI rule improves the estimation of the filter bank parameters and makes it more robust to noise. The image denoising results are presented for both synthetic and real-world images. It is shown that the adaptive wavelet decompositions outperform the existing fixed decompositions in terms of denoising quality of images that contain periodic components, and in general they give more compact image representations.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika