Napredna pretraga

Pregled bibliografske jedinice broj: 253902

Methodology of concept control synthesis to avoid unmoving and moving obstacles (II)


Kulić, Ranka; Vukić, Zoran
Methodology of concept control synthesis to avoid unmoving and moving obstacles (II) // Journal of Intelligent and Robotic Systems, 45 (2006), 3; 267-294 (međunarodna recenzija, članak, znanstveni)


Naslov
Methodology of concept control synthesis to avoid unmoving and moving obstacles (II)

Autori
Kulić, Ranka ; Vukić, Zoran

Izvornik
Journal of Intelligent and Robotic Systems (0921-0296) 45 (2006), 3; 267-294

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Behavioral cloning; Cloning success; Linear regression; Machine learning; Obstacle avoiding; RBF neural network; Robot motion planning

Sažetak
Dynamic path generation problem of robot in environment with other unmoving and moving objects is considered. Generally, the problem is known in literature as find path or robot motion planning. In this paper we apply the behavioral cloning approach to design the robot controller. In behavioral cloning, the system learns from control traces of a human operator. The task for the given problem is to find a controller not only in the form of the explicit mathematical expression. So RBF neural network is used also. The goal is to apply controller for the mobile robot motion planning in situation with infinite number of obstacles. The advantage of this approach lies in the fact that a complete path can be defined off-line, without using sophisticated symbolical models of obstacles.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Projekt / tema
0036010

Ustanove
Fakultet elektrotehnike i računarstva, Zagreb

Autor s matičnim brojem:
Zoran Vukić, (74412)

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka:


  • SCIex