Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi

New mechanism of selective killing of activated hepatic stellate cells (CROSBI ID 119051)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Dodig, Milan ; Mullen Kevin D. New mechanism of selective killing of activated hepatic stellate cells // Hepatology (Baltimore, Md.), 38 (2003), 4; 1051-1053. doi: 10.1002/hep.1840380432

Podaci o odgovornosti

Dodig, Milan ; Mullen Kevin D.

engleski

New mechanism of selective killing of activated hepatic stellate cells

Background & Aims: Hepatic stellate cells play an important role in liver fibrogenesis, and hepatic stellate cell death may be involved in the termination of this response. Methods: Molecular mechanisms of hepatic stellate cell killing were studied in hepatic stellate cell/Kupffer cell cocultures. Results: Lipopolysaccharide stimulation of hepatic stellate cell/Kupffer cell cocultures, but not of hepatic stellate cell monocultures, induced profound alterations of hepatic stellate cell morphology and hepatic stellate cell death. Kupffer cell-induced hepatic stellate cell killing required hepatic stellate cell/Kupffer cell contacts and was prevented by dexamethasone, prostaglandin E(2), tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor 2 antagonists, and down-regulation of receptor-interacting protein, but not by antioxidants, tumor necrosis factor receptor, or CD95 antagonists. Hepatic stellate cell death was characterized by activation of caspases 3, 8, and 9, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling negativity, lack of gross calcium overload, and TRAIL trafficking to the plasma membrane. Inhibition of caspase 9, but not of caspases 3, 8, or 10, prevented hepatic stellate cell death. Lipopolysaccharide induced a dexamethasone- and prostaglandin E(2)-sensitive expression of TRAIL in Kupffer cells. TRAIL receptors 1 and 2, FLIP (caspase 8-inhibitory protein), and receptor-interacting protein were up-regulated during hepatic stellate cell transformation ; however, TRAIL addition did not induce hepatic stellate cell death. Hepatic stellate cell susceptibility toward Kupffer cell-induced death paralleled receptor-interacting protein and TRAIL-receptor expression levels. Conclusions: Activated Kupffer cell can effectively kill hepatic stellate cell by a caspase 9- and receptor-interacting protein-dependent mechanism, possibly involving TRAIL. The data may suggest a novel form of hepatic stellate cell death.

hepatology ; selective killing ; hepatic stellate cells

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

38 (4)

2003.

1051-1053

objavljeno

0270-9139

10.1002/hep.1840380432

Povezanost rada

Temeljne medicinske znanosti

Poveznice
Indeksiranost