Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi !

The maximum entropy production principle as the guidline for predicting evolution of complex systems (CROSBI ID 509199)

Prilog sa skupa u zborniku | sažetak izlaganja sa skupa | međunarodna recenzija

Juretić, Davor ; Županović, Paško ; Botrić, Srećko The maximum entropy production principle as the guidline for predicting evolution of complex systems // MATH/CHEM/COMP 2005, Dubrovnik International Course & Conference on the Interfaces among Mathematics, Chemistry and Computer Sciences / Graovac, Ante ; Pokrić, Biserka ; Smrečki, Vilko (ur.). Zagreb: Institut Ruđer Bošković, 2005. str. 31-x

Podaci o odgovornosti

Juretić, Davor ; Županović, Paško ; Botrić, Srećko

engleski

The maximum entropy production principle as the guidline for predicting evolution of complex systems

Maximum entropy production (MEP) principle has been derived recently in a ground-breaking work of Dewar (1), who used an information theoretical formulation of non-equilibrium statistical mechanics. The MEP principle states that the MEP state is reproducibly selected because it is the most probable non-equilibrium steady state compatible with given external constraints. In the linear region, for the case of an electric network, MEP is equivalent to the Kirchhoff’ s loop law when overall energy conservation is assumed (2). In the case of heat conduction in an anisotropic crystal, MEP is equivalent to the Onsager-Rayleigh principle of the “ least dissipation of energy” (3). In the nonlinear region, MEP provides generalization of Onsager’ s theory for situations and systems far from equilibrium. For instance, when modeling global climate MEP predicts that winds and currents driven by thermal gradients establish themselves as the most effective heat transport from the warmer tropics to the colder poles which maximizes the entropy production. We shall discuss what would be the best mode of MEP application in biochemistry (4, 5) and how realistic are selected states with maximum information entropy and maximum dissipation. Natural selection for the coexistence of ordered and dissipative regions far from equilibrium can be understood as an expression of the same basic concept, namely, selection of the most probable state, which produces and exports more entropy to the environment than a purely dissipative "soup". To conclude, recent research at the University of Split points out toward maximum entropy production principle as a guideline to modeling complex system, including predicting its evolution, irrespective of system scale, nature, or its distance to equilibrium. 1)Dewar, R. C. J. Phys. A: Math. Gen. 38, L371– L381 (2005). 2)Županović, P., Juretić, D., Botrić, S. Phys. Rev. E. 70, 0561108 (2004). 3)Županović, P., Juretić, D., Botrić, S. Fizika, in press (2005). 4)Županović, P., Juretić, D. Croat.Chem. Acta 77, 561-571 (2004). 5) Juretić, D., Županović, P. Comput.Biol.Chem. 27, 541-553.

entropy production; non-equilibrium steady state; selection principle

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o prilogu

31-x.

2005.

objavljeno

Podaci o matičnoj publikaciji

MATH/CHEM/COMP 2005, Dubrovnik International Course & Conference on the Interfaces among Mathematics, Chemistry and Computer Sciences

Graovac, Ante ; Pokrić, Biserka ; Smrečki, Vilko

Zagreb: Institut Ruđer Bošković

Podaci o skupu

Dubrovnik International Course & Conference on the Interfaces among Mathemathics, Chemistry and Computor Sciences: MATH/CHEM/COMP 2005

pozvano predavanje

20.06.2005-25.06.2005

Dubrovnik, Hrvatska

Povezanost rada

Fizika, Biologija