A LINES-POINTS RELATION FORMULA FOR SYMMETRIC BLOCK DESIGN

Vladimir Ćepulić

Pajo Slamić

University of Zagreb, University of Rijeka
10000 Zagreb, CROATIA 51000 Rijeka, CROATIA

We proved the following result

Theorem. If there are t lines of a (v, k, λ) -symmetric block design, all containing the same s points, $0 \le s < \lambda$, then the union of their point sets should contain at least

$$m_s(t) = tk + {t-1 \choose 2}s - {t \choose 2}\lambda$$

points, for $1 \le t \le \mu_s = \lfloor \frac{k-s}{\lambda-s} + 1 \rfloor$, and $m_s(t) = m_s(\mu_s)$, for $t > \mu_s$.

This result has useful applications in constructing symmetric block designs, especially for building their orbital structures.

At the beginning we recall some basic definitions.

Definition 1. A finite incidence structure $\mathcal{D} = (\mathcal{P}, \mathcal{B}, I)$ consists of two finite sets, a point set \mathcal{P} and a line set \mathcal{B} , and of the incidence relation $I \subseteq \mathcal{P} \times \mathcal{B}$. We say that P is on x (or x is going through P), if $(P, x) \in I$.

For $P \in \mathcal{P}, x \in \mathcal{B}$, denote with

$$\langle P \rangle = \{ y \in \mathcal{B} \mid (P, y) \in I \},$$

the set of lines through P, and with

$$\langle x \rangle = \{ Q \in \mathcal{P} \mid (Q, x) \in I \},$$

the set of points on x. The cardinal numbers of these sets we denote by |P| and |x|, respectively.

Definition 2. A (v, k, λ) -symmetric block design, $v, k, \lambda \in \mathbb{N}, \ k > \lambda$ is an incident structure $\mathcal{D} = (\mathcal{P}, \mathcal{B}, I)$ such that:

(i)
$$|\mathcal{P}| = |\mathcal{B}| = v = k(k-1)\lambda/\lambda + 1$$
,

(ii)
$$|x| = |P| = k$$
,

(iii)
$$|\langle x \rangle \cap \langle y \rangle| = |\langle P \rangle \cap \langle Q \rangle| = \lambda$$
,

for all $x, y \in \mathcal{B}, P, Q \in \mathcal{P}$,

with $x \neq y$, $P \neq Q$.

In the following we shall use the term design for symmetric block design.

Definition 3. Let $\mathcal{D}_1 = (\mathcal{P}_1, \mathcal{B}_1, I_1)$ and $\mathcal{D}_2 = (\mathcal{P}_2, \mathcal{B}_2, I_2)$ be two incidence structures. An *isomorphism of* \mathcal{D}_1 *onto* \mathcal{D}_2 is a bijection $\alpha : \mathcal{P}_1 \cup \mathcal{B}_1 \Rightarrow \mathcal{P}_2 \cup \mathcal{B}_2$ such that:

- $(1.) \mathcal{P}_1 \alpha = \mathcal{P}_2$
- (2.) $\mathcal{B}_1 \alpha = \mathcal{B}_2$ and
- $(3.) (P,x) \in I_1 \Leftrightarrow (P\alpha, x\alpha) \in I_2.$

If \mathcal{D}_1 and \mathcal{D}_2 are isomorphic, we write $\mathcal{D}_1 \cong \mathcal{D}_2$.

If α is an isomorphism of \mathcal{D} onto \mathcal{D} , we say that α is an automorphism. The full group of automorphism of \mathcal{D} we denote by $Aut(\mathcal{D})$.

Definition 4. For $x \in \mathcal{B}, P \in \mathcal{P}$ and a group $G \leq Aut(\mathcal{D})$, we denote by $xG = \{xg|g \in G\}$, $PG = \{Pg|g \in G\}$ the G-orbits of x and P, respectively. There are as many point orbits as line orbits. Denoting this number by t, we have the partitions:

$$\mathcal{B} = igsqcup_{i=1}^t \mathcal{B}_i, \mathcal{P} = igsqcup_{r=1}^t \mathcal{P}_r$$

Obviously, $|\mathcal{B}_i|$, $|\mathcal{P}_r|$ divide |G|.

PROOF OF THE THEOREM:

According to the above definitions a set of different lines of a (v, k, λ) -design \mathcal{D} can have at most λ points in common, and, similarly, for a set of different points there exist at most λ lines containing all of them.

Let $\mathcal{T} = \{x_1, x_2, ..., x_t\}$ be a set of t lines in $\mathcal{D}, t \geq 2$, all of them containing the same point set $S = \{P_1, P_2, ..., P_s\}$.

In the following we are dealing with the problem how many different points do contain the lines in T. In other words, to estimate the number of points necessary for building t lines sharing the same s points. We shall denote such a number by $m_s(t)$.

For two lines x_1 and x_2 , it is always

$$|\langle x_1 \rangle \cup \langle x_2 \rangle| = |x_1| + |x_2| - |\langle x_1 \rangle \cap \langle x_2 \rangle| = 2k - \lambda.$$

The third line $\langle x_3 \rangle$ can have with the former two at most $s + 2(\lambda - s)$ common points, admitting the possibility that the sets $\langle x_1 \rangle \cap \langle x_3 \rangle \setminus S$ and $\langle x_2 \rangle \cap \langle x_3 \rangle \setminus S$ are disjoint. Thus the third line contains at least $k - s - 2(\lambda - s) = k - 2\lambda + s$ new points.

Continuing in this way we see that $\langle x_i \rangle$ can share with the union of preceding lines at most $s + (i-1)(\lambda - s)$ common points — in the extreme case that all the sets $\langle x_i \rangle \cap \langle x_j \rangle \setminus S$, for j < i, are disjoint. Thus the *i*-th line x_i contains at least

(*)
$$n_i = k - s - (i-1)(\lambda - s) = k - (i-1)\lambda + (i-2)s$$

new points. Clearly, this holds only for the case that $n_i \geq 0$. Otherwise, the above extreme case cannot appear and we cannot conclude, arguing as above, that x_i and the further lines bring some new points.

Thus, we set $n_i = 0$ for $k - s - (i - 1)(\lambda - s) \le 0$, which is equivalent with

$$i - 1 \le \frac{k - s}{\lambda - s},$$

that is

$$i \le \lfloor \frac{k-s}{\lambda-s} + 1 \rfloor \equiv \mu_s.$$

The minimal number $m_s(t)$ of different points needed for building t lines sharing the same set of s points is, by previous argumentation, equal

$$m_s(t) = \sum_{i=1}^t n_i.$$

Now, for $t \leq \mu_s$ we have

$$m_s(t) = \sum_{i=1}^{t} [k - (i-1)\lambda + (i-2)s]$$

= $tk - \sum_{i=2}^{t} (i-1)\lambda + \sum_{i=3}^{t} (i-2)s$
= $tk - {t \choose 2}\lambda + {t-1 \choose 2}s$,

and for $t > \mu_s$ it is $m_s(t) = m_s(\mu_s)$.

An additional condition on t is according the definition of symmetric block design the following one: $t \leq \lambda$, except if s = 1 when $t \leq k$.

The Theorem is proved.

Note: It remains to consider the case $s = \lambda$. Here $\langle x_i \rangle \cap \langle x_j \rangle = S$, for all i, j, and thus

$$m_{\lambda}(t) = |\bigcup_{i=1}^{t} \langle x_i \rangle|$$

$$= |S \bigsqcup (\bigcup_{i=1}^{t} (\langle x_i \rangle \setminus S))|$$

$$= |S \sqcup (\bigcup_{i=1}^{t} (\langle x_i \rangle \setminus S))| = \lambda + t(k - \lambda),$$

 $m_{\lambda}(t)$ being the exact number of points needed.

Obviously, $\lambda + t(k - \lambda) \le v = \frac{k(k-1)}{\lambda} + 1 \Rightarrow t \le \frac{k+\lambda-1}{\lambda}$ and thus

$$t \le \lfloor \frac{k+\lambda-1}{\lambda} \rfloor = \lfloor \frac{k-1}{\lambda} + 1 \rfloor.$$