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We proved the following result
Theorem. If there aret lines of a (v, k, \)—symmetric
block design, all containing the same s points, 0 < s < A,

then the union of their point sets should contain at least

ma(t) = th + (t;1>s— @A

points, for 1 <t < py = |22 4+ 1], and my(t) = my(ps),
fort > ps.

This result has useful applications in constructing sym-
metric block designs, especially for building their orbital

structures.



At the beginning we recall some basic definitions.

Definition 1. A finite incidence structure D = (P, B, 1)
consists of two finite sets, a point set P and a line set B, and
of the incidence relation I C P x B. We say that P ison z
(or x is going through P), if (P, x) € I.

For P € P, x € B, denote with
(P)={y e B|(Py) €I},
the set of lines through P, and with
(r) ={Q e P | (Q,z) € I},

the set of points on x. The cardinal numbers of these sets

we denote by |P| and |z|, respectively.



Definition 2. A (v, k, A\)—symmetric block design,
v,k,A\ € N, k > \is an incident structure D = (P, B, I)
such that:

i) [P|=|B|=v=k(k—1)A/A+1,
(ii) x| = [P[ = E,

(iii) [{z) N ()| = [(P) N (Q)] = A,
forall z,y € B, P,Q € P,

with © # y, P # Q.

In the following we shall use the term design for symmetric
block design.

Definition 3. Let Dy = (Py, By, I1) and Dy = (Ps, Bs, 1)
be two incidence structures. An isomorphism of Dy onto
D, is a bijection a : Py U By = Py U By such that:

(1.) Pra = Ps
(2.) By = By and
(3.) (P,z) € 1 & (Pa,za) € Is.

If D; and D, are isomorphic, we write Dy = Ds.



If o is an isomorphism of D onto D, we say that « is an
automorphism. The full group of automorphism of D we
denote by Aut(D).

Definition 4. For z € B,P € P and a group
G < Aut(D), we denote by =G = {zglg € G},
PG = {Pg|g € G} the G—orbits of x and P, respectively.
There are as many point orbits as line orbits. Denoting this

number by ¢, we have the partitions:

t t
B=||B.,P=|]|P
1=1 r=1

Obviously,|B;|, |P,| divide |G|.



PROOF OF THE THEOREM:
According to the above definitions a set of different lines of
a (v, k, A\)—design D can have at most A points in common,
and, similarly, for a set of different points there exist at most
A lines containing all of them.

Let T = {xy, 2, ..., 2;} be aset of ¢ lines in D, t > 2, all
of them containing the same point set S = { Py, P», ..., Ps}.

In the following we are dealing with the problem how many
different points do contain the lines in T. In other words, to
estimate the number of points necessary for building ¢ lines
sharing the same s points. We shall denote such a number
by m(t).

For two lines x1 and x9, it is always
[{z1) U {22)| = [21] + |o| — [(21) N (22)| = 2k — A
The third line <x3> can have with the former two at most
s+ 2(A — s) common points, admitting the possibility that
the sets (z1) N (x3) \ S and (x9) N (z3) \ S are disjoint. Thus
the third line contains at least k —s —2(A—s) = k—2\A+s

new points.



Continuing in this way we see that (z;) can share with the
union of preceding lines at most s+ (¢ — 1)(A — s) common
points — in the extreme case that all the sets (z;) N (x;) \ 5,

for 7 < ¢, are disjoint. Thus the ¢-th line x; contains at least
(%) ni=k—s—(—1)(A=s)=k—(—1)X+ (1 —2)s

new points. Clearly, this holds only for the case that n; > 0.
Otherwise, the above extreme case cannot appear and we
cannot conclude, arguing as above, that x; and the further
lines bring some new points.

Thus, we set n; =0 for k — s — (i — 1)(A — s) < 0, which

is equivalent with

that is




The minimal number mg(t) of different points needed for
building ¢ lines sharing the same set of s points is, by previous

argumentation, equal

myg(t) = Z n;.

Now, for ¢t < us we have

my(t) = Z[k—(z‘—l))\Jr(z’—Q)s]

and for t > pg it is mg(t) = mg(ps).

An additional condition on ¢ is according the definition of
symmetric block design the following one: t < A, except if
s =1 when t < k.

The Theorem is proved.



Note: It remains to consider the case s = \. Here (x;) N

(z;) =S, for all 7, j, and thus

t

ma(t) = [ (@)

1=1

=|S|_|U (z:) \ )]

= [SU(| (=) \ )= A+tk—N),

1=1

m(t) being the exact number of points needed.

Obviously, A+ t(k — X) < v =" g o g < bl g
thus

A e |}




