Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 16690

The best total least squares line in $R^3$


Jukić, Dragan; Scitovski, Rudolf; Ungar, Šime
The best total least squares line in $R^3$ // Proceedings of the 7th International Conference on Operational Research / Aganović, Ibrahim ; Hunjak, Tihomir ; Scitovski, Rudolf (ur.).
Osijek: HDOI, 1999. str. 311-316 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 16690 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
The best total least squares line in $R^3$

Autori
Jukić, Dragan ; Scitovski, Rudolf ; Ungar, Šime

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 7th International Conference on Operational Research / Aganović, Ibrahim ; Hunjak, Tihomir ; Scitovski, Rudolf - Osijek : HDOI, 1999, 311-316

Skup
7th International Conference on Operational Research - KOI'98

Mjesto i datum
Rovinj, Hrvatska, 30.09.-02.10.1998.30.09.-02.10.1998.30.09.-02.10.1998

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
total least squares; orthogonal distance regression

Sažetak
We consider the problem of determining the line in $mathbb R^3$ which does the best total least squares approximation of the given data $(p_i,{f r}_i),,i=1,ldots,m$, where ${f r}_i=(x_i,y_i,z_i)^TinR^3$ are some points, and $p_i>0$ are corresponding weights. By using elementary mathematics, we show how to determine such a best total least squares line.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
037006
165021

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Profili:

Avatar Url Šime Ungar (autor)

Avatar Url Rudolf Scitovski (autor)

Avatar Url Dragan Jukić (autor)


Citiraj ovu publikaciju:

Jukić, Dragan; Scitovski, Rudolf; Ungar, Šime
The best total least squares line in $R^3$ // Proceedings of the 7th International Conference on Operational Research / Aganović, Ibrahim ; Hunjak, Tihomir ; Scitovski, Rudolf (ur.).
Osijek: HDOI, 1999. str. 311-316 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Jukić, D., Scitovski, R. & Ungar, Š. (1999) The best total least squares line in $R^3$. U: Aganović, I., Hunjak, T. & Scitovski, R. (ur.)Proceedings of the 7th International Conference on Operational Research.
@article{article, author = {Juki\'{c}, Dragan and Scitovski, Rudolf and Ungar, \v{S}ime}, year = {1999}, pages = {311-316}, keywords = {total least squares, orthogonal distance regression}, title = {The best total least squares line in $R\^{}3$}, keyword = {total least squares, orthogonal distance regression}, publisher = {HDOI}, publisherplace = {Rovinj, Hrvatska} }
@article{article, author = {Juki\'{c}, Dragan and Scitovski, Rudolf and Ungar, \v{S}ime}, year = {1999}, pages = {311-316}, keywords = {total least squares, orthogonal distance regression}, title = {The best total least squares line in $R\^{}3$}, keyword = {total least squares, orthogonal distance regression}, publisher = {HDOI}, publisherplace = {Rovinj, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font