Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi !

Model Predictive Control for Automatic Transmission Upshift Inertia Phase (CROSBI ID 325770)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Cvok, Ivan ; Soldo, Jure ; Deur, Joško ; Ivanovic, Vladimir ; Zhang, Yijing ; Fujii, Yuji Model Predictive Control for Automatic Transmission Upshift Inertia Phase // IEEE transactions on control systems technology, 31 (2023), 6; 3260072, 15. doi: 10.1109/TCST.2023.3260072

Podaci o odgovornosti

Cvok, Ivan ; Soldo, Jure ; Deur, Joško ; Ivanovic, Vladimir ; Zhang, Yijing ; Fujii, Yuji

engleski

Model Predictive Control for Automatic Transmission Upshift Inertia Phase

This article deals with model predictive control (MPC) design for automatic transmission (AT) upshift inertia phase, which aims to optimally coordinate the actions of oncoming (ONC) and off- going (OFG) clutches and engine and to facilitate calibration. The designed MPC strategy accounts for clutch actuation dynamics and constraints, while setting the tradeoff between three key and conflicting shift quality criteria: comfort ; duration ; and efficiency. The shift comfort and duration are ensured by minimizing output shaft torque and ONC clutch slip speed tracking errors, and the shift efficiency is reflected in clutch energy loss minimization on a prediction horizon. This allows for the calibration of the MPC performance through setting the inertia phase duration, the output shaft torque reference, cost function weighting coefficients, and constraints, rather than optimizing the shift control profiles themselves. The MPC problem is formulated as a constrained quadratic programming problem and efficiently solved online by an interior-point solver. The proposed MPC strategy is applicable to other transmissions with multiple actuators, such as parallel hybrid transmissions. The MPC system is examined through nonlinear powertrain model simulations for one to three shift and its performance is compared with an offline, multiobjective optimization-based control strategy. The MPC design flexibility and ease of calibration are demonstrated for different shift comfort and duration targets, as well as cost function tuning, and robustness with respect to clutch actuation parameter uncertainties is examined.

Automatic transmission (AT) ; Inertia phase ; Model predictive control (MPC) ; Optimization ; Shift control

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

31 (6)

2023.

3260072

15

objavljeno

1063-6536

1558-0865

10.1109/TCST.2023.3260072

Povezanost rada

Strojarstvo

Poveznice
Indeksiranost