Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi

Can Differently Stabilized Silver Nanoparticles Modify Calcium Phosphate Precipitation? (CROSBI ID 322693)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Inkret, Suzana ; Ćurlin, Marija ; Smokrović, Kristina ; Kalčec, Nikolina ; Peranić, Nikolina ; Maltar-Strmečki, Nadica ; Domazet Jurašin, Darija ; Dutour Sikirić, Maja Can Differently Stabilized Silver Nanoparticles Modify Calcium Phosphate Precipitation? // Materials, 16 (2023), 5; 1764, 23. doi: 10.3390/ma16051764

Podaci o odgovornosti

Inkret, Suzana ; Ćurlin, Marija ; Smokrović, Kristina ; Kalčec, Nikolina ; Peranić, Nikolina ; Maltar-Strmečki, Nadica ; Domazet Jurašin, Darija ; Dutour Sikirić, Maja

engleski

Can Differently Stabilized Silver Nanoparticles Modify Calcium Phosphate Precipitation?

Calcium phosphates (CaPs) composites with silver nanoparticles (AgNPs) attract attention as a possible alternative to conventional approaches to combating orthopedic implant-associated infections. Although precipitation of calcium phosphates at room temperatures was pointed out as an advantageous method for the preparation of various CaP-based biomaterials, to the best of our knowledge, no such study exists for the preparation of CaPs/AgNP composites. Motivated by this lack of data in this study we investigated the influence of AgNPs stabilized with citrate (cit-AgNPs), poly(vinylpyrrolidone) (PVP-AgNPs), and sodium bis(2-ethylhexyl) sulfosuccinate (AOT- AgNPs) in the concentration range 5–25 mg dm−3 on the precipitation of CaPs. The first solid phase to precipitate in the investigated precipitation system was amorphous calcium phosphate (ACP). The effect of AgNPs on ACP stability was significant only in the presence of the highest concentration of AOT-AgNPs. However, in all precipitation systems containing AgNPs, the morphology of ACP was affected, as gel-like precipitates formed in addition to the typical chain-like aggregates of spherical particles. The exact effect depended on the type of AgNPs. After 60 min of reaction time, a mixture of calcium-deficient hydroxyapatite (CaDHA) and a smaller amount of octacalcium phosphate (OCP) formed. PXRD and EPR data point out that the amount of formed OCP decreases with increasing AgNPs concentration. The obtained results showed that AgNPs can modify the precipitation of CaPs and that CaPs properties can be fine-tuned by the choice of stabilizing agent. Furthermore, it was shown that precipitation can be used as a simple and fast method for CaP/AgNPs composites preparation which is of special interest for biomaterials preparation.

calcium phosphates ; silver nanoparticles ; amorphous calcium phosphate ; transformation ; composites

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

16 (5)

2023.

1764

23

objavljeno

1996-1944

10.3390/ma16051764

Trošak objave rada u otvorenom pristupu

Povezanost rada

Fizika, Javno zdravstvo i zdravstvena zaštita, Kemija

Poveznice
Indeksiranost