Pregled bibliografske jedinice broj: 1235147
Application of machine learning models for estimation of material properties
Application of machine learning models for estimation of material properties // Book of Abstracts: Digitalisation in science and society
Bratislava : Trnava, 2022. str. 13-13 (poster, nije recenziran, sažetak, znanstveni)
CROSBI ID: 1235147 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Application of machine learning models for estimation of material properties
Autori
Marković, Ela ; Marohnić, Tea ; Basan, Robert
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Book of Abstracts: Digitalisation in science and society
/ - Bratislava : Trnava, 2022, 13-13
Skup
6th International PhD Conference "Digitalisation in science and society"
Mjesto i datum
Ljubljana, Slovenija, 27.10.2022. - 28.10.2022
Vrsta sudjelovanja
Poster
Vrsta recenzije
Nije recenziran
Ključne riječi
Feature selection ; Cyclic/fatigue material behavior
Sažetak
In the process of designing a part or a component, computer simulations are extensively used as they test the intended function of a product. Complex load conditions need to be adequately represented in simulations to make reliable estimations of the behavior of a structure. The material of a structure influences its mechanical behavior and is defined through various material models. The choice of the material model will depend on the conditions in which the structure will be used. After choosing a material model, user must define model parameters or use libraries with available material data of common materials. As not all material parameters can easily be acquired from experiments, data-driven models are used to find relationships between desired material parameters and the available ones. Data-driven models or, more specifically, machine learning (ML) models enable detecting patterns and extracting new relationships between material parameters which could not be discovered using the classical empirical models [1]. ML models need to be built on a sufficient amount of data, yet a common problem concerning material characterization is small low-dimensional data sets [2]. To overcome this problem, important input variables need to be detected by using feature selection techniques [3]. Furthermore, material properties from existing material databases need to be collected and used in building ML models to increase the number of learning examples [2]. These models should enable the end-user to efficiently design a product without the need to carry out time-consuming experimental material testing.
Izvorni jezik
Engleski
Znanstvena područja
Strojarstvo
POVEZANOST RADA
Projekti:
HRZZ-IP-2020-02-5764 - Razvoj modela za procjenu ponašanja materijala temeljenih na strojnom učenju (MADEIRA) (Basan, Robert, HRZZ - 2020-02) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-116 - Istraživanje i razvoj prediktivnih modela ponašanja konstrukcijskih materijala temeljenih na metodama strojnog učenja (Basan, Robert, NadSve - UNIRI PROJEKTI) ( CroRIS)
Ustanove:
Tehnički fakultet, Rijeka