Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi !

A Comprehensive 3D FEM Model of Excitable Tissue and Capacitive Electrode Interface (CROSBI ID 726604)

Prilog sa skupa u zborniku | sažetak izlaganja sa skupa | međunarodna recenzija

Opančar, Aleksandar ; Mioković, Anja ; Habek, Nikola ; Đerek, Vedran A Comprehensive 3D FEM Model of Excitable Tissue and Capacitive Electrode Interface // MRS Fall Meeting 2021 Abstract Book. 2021. str. 1089-1089

Podaci o odgovornosti

Opančar, Aleksandar ; Mioković, Anja ; Habek, Nikola ; Đerek, Vedran

engleski

A Comprehensive 3D FEM Model of Excitable Tissue and Capacitive Electrode Interface

The interface of excitable cells and stimulation or recording electrodes is essential for bioelectronic applications. Parameters such as the electrode impedance and capacitance, interface electrochemistry, surface structuring and long term in vivo stability have been thoroughly studied. However, in many applications, especially clinical ones, only trivial electrode geometries are used, resulting in increased charge density thresholds. Using optimized electrode geometries and stimulation protocols may overall be more effective, especially in the case of implanted bioelectronic devices with limited current generation capabilities. For highly localized target specific electrostimulation, electrode design and stimulation protocol are crucial parameters to consider. We consider multiple planar and 3D electrode configurations for stimulating excitable cells and tissues, and different stimulation protocols using pulsed and modulated current. A comprehensive finite element method (FEM) model encompassing realistic capacitive photo-electrode (organic electrolytic photocapacitor – OEPC) and tissue model is made in COMSOL Multiphysics® software. Electrodes are characterized by their contact electrical properties, contact capacitance and contact resistance, while the OEPC is characterized by its equivalent circuit model. Realistic cell membranes and action potential propagation are implemented using the Hodgkin–Huxley model which can be tailored to a specific cell type. We show that using the optimized electrode configuration enables multifold current density enhancement at the targeted stimulation area which enables effective cell and tissue excitation while minimising the residual effect on the surrounding tissue. Our numerical findings are validated in vitro using cortical neuron cell cultures and mouse brain slices.

bioelectronic interfaces, organic electronics, neurostimulation, FEM modeling

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o prilogu

1089-1089.

2021.

objavljeno

Podaci o matičnoj publikaciji

MRS Fall Meeting 2021 Abstract Book

Podaci o skupu

MRS Fall Meeting 2021

poster

01.01.2021-01.01.2021

Boston, SAD

Povezanost rada

Fizika

Poveznice