Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi !

Dynamic spatio-temporal correlation and hierarchical directed graph structure based ultra- short-term wind farm cluster power forecasting method (CROSBI ID 312571)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Wang, Fei ; Chen, Peng ; Zhen, Zhao ; Yin, Rui ; Cao, Chunmei ; Zhang, Yagang ; Duić, Neven Dynamic spatio-temporal correlation and hierarchical directed graph structure based ultra- short-term wind farm cluster power forecasting method // Applied energy, 323 (2022), 119579, 30. doi: 10.1016/j.apenergy.2022.119579

Podaci o odgovornosti

Wang, Fei ; Chen, Peng ; Zhen, Zhao ; Yin, Rui ; Cao, Chunmei ; Zhang, Yagang ; Duić, Neven

engleski

Dynamic spatio-temporal correlation and hierarchical directed graph structure based ultra- short-term wind farm cluster power forecasting method

Accurate wind farm cluster power forecasting is of great significance for the safe operation of the power system with high wind power penetration. However, most of the current neural network methods used for wind farm cluster power forecasting have the following three problems: (1) lack of consideration of dynamic spatio-temporal correlation among adjacent wind farms ; (2) simultaneously forecasting all wind farms’ power to obtain the total power will produce numerous error sources ; (3) ignoring the causal relationship among input variables. Therefore, to solve the above problems, this paper proposes an ultra-short-term wind farm cluster power forecasting method based on dynamic spatio- temporal correlation and hierarchical directed graph structure. Firstly, three different types of nodes (wind speed nodes, wind power nodes, and target node) and input samples are defined, and then the spatio-temporal correlation matrices that can describe the correlation of adjacent wind farms are also calculated. Secondly, directed edges are defined to connect different nodes in order to obtain the hierarchical directed graph structure. Finally, this graph structure with dynamic spatio-temporal correlation information is used to train the forecasting model. In case study, compared with other benchmark methods, the proposed method shows excellent performance in improving accuracy of power forecasting.

Ultra-short-term ; Wind farm cluster power forecasting ; Dynamic spatio-temporal correlation ; Hierarchical directed graph structure ; Causal relationship

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

323

2022.

119579

30

objavljeno

0306-2619

1872-9118

10.1016/j.apenergy.2022.119579

Povezanost rada

Strojarstvo

Poveznice
Indeksiranost