Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi

Numerical methods for accurate computation of the eigenvalues of Hermitian matrices and the singular values of general matrices (CROSBI ID 310275)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Drmač, Zlatko Numerical methods for accurate computation of the eigenvalues of Hermitian matrices and the singular values of general matrices // SeMA journal, 78 (2021), 1; 53-92. doi: 10.1007/s40324-020-00229-8

Podaci o odgovornosti

Drmač, Zlatko

engleski

Numerical methods for accurate computation of the eigenvalues of Hermitian matrices and the singular values of general matrices

This paper offers a review of numerical methods for computation of the eigenvalues of Hermitian matrices and the singular values of general and some classes of structured matrices. The focus is on the main principles behind the methods that guarantee high accuracy even in the cases that are ill-conditioned for the conventional methods. First, it is shown that a particular structure of the errors in a finite precision implementation of an algorithm allows for a much better measure of sensitivity and that computation with high accuracy is possible despite a large classical condition number. Such structured errors incurred by finite precision computation are in some algorithms e.g. entry-wise or column-wise small, which is much better than the usually considered errors that are in general small only when measured in the Frobenius matrix norm. Specially tailored perturbation theory for such structured perturbations of Hermitian matrices guarantees much better bounds for the relative errors in the computed eigenvalues. Secondly, we review an unconventional approach to accurate computation of the singular values and eigenvalues of some notoriously ill-conditioned structured matrices, such as e.g. Cauchy, Vandermonde and Hankel matrices. The distinctive feature of accurate algorithms is using the intrinsic parameters that define such matrices to obtain a non-orthogonal factorization, such as the LDU factorization, and then computing the singular values of the product of thus computed factors. The state of the art software is discussed as well.

Backward error ; Condition number ; Eigenvalues ; Hermitian matrices ; Jacobi method ; LAPACK ; Perturbation theory ; Rank revealing decomposition ; Singular value decomposition

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

78 (1)

2021.

53-92

objavljeno

2254-3902

2281-7875

10.1007/s40324-020-00229-8

Povezanost rada

Matematika

Poveznice
Indeksiranost