Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1195809

Mathematical modeling of COVID-19 spread using genetic programming algorithm


Benolić, Leo; Blagojević, Anđela; Šušteršič, Tijana; Car, Zlatan; Filipović, Nenad
Mathematical modeling of COVID-19 spread using genetic programming algorithm // 1st Serbian International Conference on Applied Artificial Intelligence (SICAAI) : Book of abstracts / Filipović, Nenad (ur.).
Kragujevac: University of Kragujevac, 2022. str. 1-4 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1195809 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Mathematical modeling of COVID-19 spread using genetic programming algorithm

Autori
Benolić, Leo ; Blagojević, Anđela ; Šušteršič, Tijana ; Car, Zlatan ; Filipović, Nenad

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
1st Serbian International Conference on Applied Artificial Intelligence (SICAAI) : Book of abstracts / Filipović, Nenad - Kragujevac : University of Kragujevac, 2022, 1-4

ISBN
978-86-81037-71-3

Skup
1st Serbian International Conference on Applied Artificial Intelligence (SICAAI)

Mjesto i datum
Kragujevac, Srbija, 19-20.05.2022

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
artificial intelligence ; COVID-19 ; genetic programming ; mathematical prediction models ; variants

Sažetak
This paper analyses the possibilities of using Machine learning to develop a forecasting model for COVID-19 with a publicly available dataset from the Johns Hopkins University COVID-19 Data Repository with the addition of the percentage of each variant from the GISAID Variant database. The Genetic programming (GP) symbolic regressor algorithm is used for the estimation of new confirmed cases, hospitalized cases, cases in intensive care units (ICUs), and the number of deaths. This metaheuristics method algorithm is made from a dataset for Austria and its neighboring countries the Czech Republic, Slovenia, and Slovakia. Machine learning was performed twice to create individual models for each country, but the second time the process covered all countries at once as a multi-country model. Variance-based sensitivity analysis was initiated using the obtained mathematical models. This analysis showed us on which input variables the output of the obtained models is sensitive, like in case of how much each covid variant affects the spreading of the virus or the number of deaths. Individual short-term models show very high R2 scores, while long-term predictions have lower R2 scores. The multi-country model achieved inferior results as additional valuables needed to be added in order to obtain better results.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Tehnički fakultet, Rijeka

Profili:

Avatar Url Zlatan Car (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada

Citiraj ovu publikaciju:

Benolić, Leo; Blagojević, Anđela; Šušteršič, Tijana; Car, Zlatan; Filipović, Nenad
Mathematical modeling of COVID-19 spread using genetic programming algorithm // 1st Serbian International Conference on Applied Artificial Intelligence (SICAAI) : Book of abstracts / Filipović, Nenad (ur.).
Kragujevac: University of Kragujevac, 2022. str. 1-4 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Benolić, L., Blagojević, A., Šušteršič, T., Car, Z. & Filipović, N. (2022) Mathematical modeling of COVID-19 spread using genetic programming algorithm. U: Filipović, N. (ur.)1st Serbian International Conference on Applied Artificial Intelligence (SICAAI) : Book of abstracts.
@article{article, author = {Benoli\'{c}, Leo and Blagojevi\'{c}, An\djela and \v{S}u\v{s}ter\v{s}i\v{c}, Tijana and Car, Zlatan and Filipovi\'{c}, Nenad}, editor = {Filipovi\'{c}, N.}, year = {2022}, pages = {1-4}, keywords = {artificial intelligence, COVID-19, genetic programming, mathematical prediction models, variants}, isbn = {978-86-81037-71-3}, title = {Mathematical modeling of COVID-19 spread using genetic programming algorithm}, keyword = {artificial intelligence, COVID-19, genetic programming, mathematical prediction models, variants}, publisher = {University of Kragujevac}, publisherplace = {Kragujevac, Srbija} }
@article{article, author = {Benoli\'{c}, Leo and Blagojevi\'{c}, An\djela and \v{S}u\v{s}ter\v{s}i\v{c}, Tijana and Car, Zlatan and Filipovi\'{c}, Nenad}, editor = {Filipovi\'{c}, N.}, year = {2022}, pages = {1-4}, keywords = {artificial intelligence, COVID-19, genetic programming, mathematical prediction models, variants}, isbn = {978-86-81037-71-3}, title = {Mathematical modeling of COVID-19 spread using genetic programming algorithm}, keyword = {artificial intelligence, COVID-19, genetic programming, mathematical prediction models, variants}, publisher = {University of Kragujevac}, publisherplace = {Kragujevac, Srbija} }




Contrast
Increase Font
Decrease Font
Dyslexic Font