Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1195803

Comparison of Image Augmentation Techniques in Urinary Bladder Cancer Diagnostics


Lorencin, Ivan; Baressi Šegota, Sandi; Glučina, Matko; Anđelić, Nikola; Štifanić, Daniel; Španjol, Josip; Car, Zlatan
Comparison of Image Augmentation Techniques in Urinary Bladder Cancer Diagnostics // 1st Serbian International Conference on Applied Artificial Intelligence (SICAAI) / - (ur.).
Kragujevac, Srbija: Sveučilište u Kragujevcu, 2022. str. 1-8 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1195803 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Comparison of Image Augmentation Techniques in Urinary Bladder Cancer Diagnostics

Autori
Lorencin, Ivan ; Baressi Šegota, Sandi ; Glučina, Matko ; Anđelić, Nikola ; Štifanić, Daniel ; Španjol, Josip ; Car, Zlatan

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
1st Serbian International Conference on Applied Artificial Intelligence (SICAAI) / - Kragujevac, Srbija : Sveučilište u Kragujevcu, 2022, 1-8

Skup
1st Serbian International Conference on Applied Artificial Intelligence (SICAAI)

Mjesto i datum
Kragujevac, Srbija, 19-20.05.2022

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
CNN, data set augmentation, GAN, urinary bladder cancer

Sažetak
Urinary bladder cancer is one of the most common malignancies in the urinary tract. One of the key challenges in medical image analysis is the curation of sufficiently large data sets. For these reasons, in this paper, two different approaches for image data set augmentation are presented. One approach is based on a pipeline that consists of various geometrical variations of original images. The second approach is based on the utilization of Generative Adversarial Networks (GAN). Such an approach is used to artificially create new images that are used to increase the volume of the training data set. The performances were investigated by using urinary bladder cancer data set. From the achieved results, it can be concluded that by applying image augmentation techniques, significantly higher results are achieved. Furthermore, it can be concluded that by applying GAN-based augmentation, even higher results ara achieved

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo, Temeljne tehničke znanosti, Kliničke medicinske znanosti



POVEZANOST RADA


Projekti:
EK-EFRR-KK.01.2.2.03.0017 - Centar kompetencija 3LJ (CEKOM 3Lj) (Jerković, Igor; Čož-Rakovac, Rozelinda; Zdolec, Nevijo, EK - KK.01.2.2.03) ( POIROT)
EK-KF-KK.01.1.1.01.0009-2 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima - IJ za napredne kooperativne sustave (DATACROSS) (Petrović, Ivan; Šmuc, Tomislav, EK - KK.01.1.1.01) ( POIROT)
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-275-1447 - Razvoj inteligentnog ekspertnog sustava za online diagnostiku raka mokračnog mjehura (Car, Zlatan, NadSve - UNIRI potpore) ( POIROT)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada aai2022.kg.ac.rs

Citiraj ovu publikaciju:

Lorencin, Ivan; Baressi Šegota, Sandi; Glučina, Matko; Anđelić, Nikola; Štifanić, Daniel; Španjol, Josip; Car, Zlatan
Comparison of Image Augmentation Techniques in Urinary Bladder Cancer Diagnostics // 1st Serbian International Conference on Applied Artificial Intelligence (SICAAI) / - (ur.).
Kragujevac, Srbija: Sveučilište u Kragujevcu, 2022. str. 1-8 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Lorencin, I., Baressi Šegota, S., Glučina, M., Anđelić, N., Štifanić, D., Španjol, J. & Car, Z. (2022) Comparison of Image Augmentation Techniques in Urinary Bladder Cancer Diagnostics. U: - (ur.)1st Serbian International Conference on Applied Artificial Intelligence (SICAAI).
@article{article, author = {Lorencin, Ivan and Baressi \v{S}egota, Sandi and Glu\v{c}ina, Matko and An\djeli\'{c}, Nikola and \v{S}tifani\'{c}, Daniel and \v{S}panjol, Josip and Car, Zlatan}, year = {2022}, pages = {1-8}, keywords = {CNN, data set augmentation, GAN, urinary bladder cancer}, title = {Comparison of Image Augmentation Techniques in Urinary Bladder Cancer Diagnostics}, keyword = {CNN, data set augmentation, GAN, urinary bladder cancer}, publisher = {Sveu\v{c}ili\v{s}te u Kragujevcu}, publisherplace = {Kragujevac, Srbija} }
@article{article, author = {Lorencin, Ivan and Baressi \v{S}egota, Sandi and Glu\v{c}ina, Matko and An\djeli\'{c}, Nikola and \v{S}tifani\'{c}, Daniel and \v{S}panjol, Josip and Car, Zlatan}, year = {2022}, pages = {1-8}, keywords = {CNN, data set augmentation, GAN, urinary bladder cancer}, title = {Comparison of Image Augmentation Techniques in Urinary Bladder Cancer Diagnostics}, keyword = {CNN, data set augmentation, GAN, urinary bladder cancer}, publisher = {Sveu\v{c}ili\v{s}te u Kragujevcu}, publisherplace = {Kragujevac, Srbija} }




Contrast
Increase Font
Decrease Font
Dyslexic Font