Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi

Performance of TiO2/UV-LED-based processes for degradation of pharmaceuticals: Effect of matrix composition and process variables (CROSBI ID 304673)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Bertagna Silva, Danilo ; Buttiglieri, Gianluigi ; Babić, Bruna ; Ašperger, Danijela ; Babić, Sandra Performance of TiO2/UV-LED-based processes for degradation of pharmaceuticals: Effect of matrix composition and process variables // Nanomaterials, 12 (2022), 2; 295, 25. doi: 10.3390/nano12020295

Podaci o odgovornosti

Bertagna Silva, Danilo ; Buttiglieri, Gianluigi ; Babić, Bruna ; Ašperger, Danijela ; Babić, Sandra

engleski

Performance of TiO2/UV-LED-based processes for degradation of pharmaceuticals: Effect of matrix composition and process variables

Ultra-violet light-emitting diode (UV-LED)-based processes for water treatment have shown the potential to surpass the hurdles that prevent the adoption of photocatalysis at a large scale due to UV-LEDs’ unique features and design flexibility. In this work, the degradation of five EU Watch List 2020/1161 pharmaceutical compounds was comprehensively investigated. Initially, the UV-A and UV-C photolytic and photocatalytic degradation of individual compounds and their mixtures were explored. A design of experiments (DoE) approach was used to quantify the effects of numerous variables on the compounds’ degradation rate constant, total organic carbon abatement, and toxicity. The reaction mechanisms of UV-A photocatalysis were investigated by adding different radical scavengers to the mix. The influence of the initial pH was tested and a second DoE helped evaluate the impact of matrix constituents on degradation rates during UV-A photocatalysis. The results showed that each compound had widely different responses to each treatment/scenario, meaning that the optimized design will depend on matrix composition, target pollutant reactivity, and required effluent standards. Each situation should be analyzed individually with care. The levels of the electrical energy per order are still unfeasible for practical applications, but LEDs of lower wavelengths (UV-C) are now approaching UV-A performance levels.

light-emitting diode ; TiO2 nanofilm ; photocatalysis ; design of experiments ; advanced oxidation processes ; contaminants of emerging concern

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

12 (2)

2022.

295

25

objavljeno

2079-4991

10.3390/nano12020295

Trošak objave rada u otvorenom pristupu

APC

Povezanost rada

Interdisciplinarne tehničke znanosti, Kemijsko inženjerstvo, Kemija

Poveznice
Indeksiranost