Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi !

Transfer learning: improving neural network based prediction of earthquake ground shaking for an area with insufficient training data (CROSBI ID 304440)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Jozinović, Dario ; Lomax, Anthony ; Štajduhar, Ivan ; Michelini, Alberto Transfer learning: improving neural network based prediction of earthquake ground shaking for an area with insufficient training data // Geophysical journal international, 229 (2021), 1; 704-718. doi: 10.1093/gji/ggab488

Podaci o odgovornosti

Jozinović, Dario ; Lomax, Anthony ; Štajduhar, Ivan ; Michelini, Alberto

engleski

Transfer learning: improving neural network based prediction of earthquake ground shaking for an area with insufficient training data

In a recent study, we showed that convolutional neural networks (CNNs) applied to network seismic traces can be used for rapid prediction of earthquake peak ground motion intensity measures (IMs) at distant stations using only recordings from stations near the epicentre. The predictions are made without any previous knowledge concerning the earthquake location and magnitude. This approach differs significantly from the standard procedure adopted by earthquake early warning systems that rely on location and magnitude information. In the previous study, we used 10 s, raw, multistation (39 stations) waveforms for the 2016 earthquake sequence in central Italy for 915 M ≥ 3.0 events (CI data set). The CI data set has a large number of spatially concentrated earthquakes and a dense network of stations. In this work, we applied the same CNN model to an area of central western Italy. In our initial application of the technique, we used a data set consisting of 266 M ≥ 3.0 earthquakes recorded by 39 stations. We found that the CNN model trained using this smaller-sized data set performed worse compared to the results presented in the previously published study. To counter the lack of data, we explored the adoption of ‘transfer learning’ (TL) methodologies using two approaches: first, by using a pre-trained model built on the CI data set and, next, by using a pre-trained model built on a different (seismological) problem that has a larger data set available for training. We show that the use of TL improves the results in terms of outliers, bias and variability of the residuals between predicted and true IM values. We also demonstrate that adding knowledge of station relative positions as an additional layer in the neural network improves the results. The improvements achieved through the experiments were demonstrated by the reduction of the number of outliers by 5 per cent, the residuals R median by 39 per cent and their standard deviation by 11 per cent.

Europe ; Waveform inversion ; Neural networks ; fuzzy logic ; Time-series analysis ; Earthquake early warning ; Earthquake ground motions

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

229 (1)

2021.

704-718

objavljeno

0956-540X

1365-246X

10.1093/gji/ggab488

Povezanost rada

Geofizika, Računarstvo

Poveznice
Indeksiranost