Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi !

Riemannian Optimization for Distance-Geometric Inverse Kinematics (CROSBI ID 303942)

Prilog u časopisu | ostalo | međunarodna recenzija

Maric, Filip ; Giamou, Matthew ; Hall, Adam W. ; Khoubyarian, Soroush ; Petrovic, Ivan ; Kelly, Jonathan Riemannian Optimization for Distance-Geometric Inverse Kinematics // Ieee transactions on robotics, 1 (2021), 1-20. doi: 10.1109/tro.2021.3123841

Podaci o odgovornosti

Maric, Filip ; Giamou, Matthew ; Hall, Adam W. ; Khoubyarian, Soroush ; Petrovic, Ivan ; Kelly, Jonathan

engleski

Riemannian Optimization for Distance-Geometric Inverse Kinematics

Solving the inverse kinematics problem is a fundamental challenge in motion planning, control, and calibration for articulated robots. Kinematic models for these robots are typically parameterized by joint angles, generating a complicated mapping between the robot configuration and the end-effector pose. Alternatively, the kinematic model and task constraints can be represented using invariant distances between points attached to the robot. In this article, we formalize the equivalence of distance-based inverse kinematics and the distance geometry problem for a large class of articulated robots and task constraints. Unlike previous approaches, we use the connection between distance geometry and low-rank matrix completion to find inverse kinematics solutions by completing a partial Euclidean distance matrix through local optimization. Furthermore, we parameterize the space of Euclidean distance matrices with the Riemannian manifold of fixed-rank Gram matrices, allowing us to leverage a variety of mature Riemannian optimization methods. Finally, we show that bound smoothing can be used to generate informed initializations without significant computational overhead, improving convergence. We demonstrate that our inverse kinematics solver achieves higher success rates than traditional techniques and substantially outperforms them on problems that involve many workspace constraints.

Robots , Kinematics , End effectors , Geometry , Global Positioning System , Robot kinematics , Transmission line matrix methods

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

1

2021.

1-20

objavljeno

1552-3098

10.1109/tro.2021.3123841

Povezanost rada

Interdisciplinarne tehničke znanosti, Matematika, Računarstvo

Poveznice
Indeksiranost