Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi !

Convex Iteration for Distance-Geometric Inverse Kinematics (CROSBI ID 303930)

Prilog u časopisu | ostalo | međunarodna recenzija

Giamou, Matthew ; Maric, Filip ; Rosen, David ; Peretroukhin, Valentin ; Roy, Nicholas ; Petrovic, Ivan ; Kelly, Jonathan Convex Iteration for Distance-Geometric Inverse Kinematics // IEEE robotics & automation letters, 1 (2022), 1-2. doi: 10.1109/lra.2022.3141763

Podaci o odgovornosti

Giamou, Matthew ; Maric, Filip ; Rosen, David ; Peretroukhin, Valentin ; Roy, Nicholas ; Petrovic, Ivan ; Kelly, Jonathan

engleski

Convex Iteration for Distance-Geometric Inverse Kinematics

Inverse kinematics (IK) is the problem of finding robot joint configurations that satisfy constraints on the position or pose of one or more end-effectors. For robots with redundant degrees of freedom, there is often an infinite, nonconvex set of solutions. The IK problem is further complicated when collision avoidance constraints are imposed by obstacles in the workspace. In general, closed-form expressions yielding feasible configurations do not exist, motivating the use of numerical solution methods. However, these approaches rely on local optimization of nonconvex problems, often requiring an accurate initialization or numerous re-initializations to converge to a valid solution. In this work, we first formulate inverse kinematics with complex workspace constraints as a convex feasibility problem whose low-rank feasible points provide exact IK solutions. We then present \texttt{;CIDGIK}; (Convex Iteration for Distance-Geometric Inverse Kinematics), an algorithm that solves this feasibility problem with a sequence of semidefinite programs whose objectives are designed to encourage low-rank minimizers. Our problem formulation elegantly unifies the configuration space and workspace constraints of a robot: intrinsic robot geometry and obstacle avoidance are both expressed as simple linear matrix equations and inequalities. Our experimental results for a variety of popular manipulator models demonstrate faster and more accurate convergence than a conventional nonlinear optimization-based approach, especially in environments with many obstacles.

Kinematics ; optimization and optimal control ; manipulation planning

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

1

2022.

1-2

objavljeno

2377-3766

10.1109/lra.2022.3141763

Povezanost rada

Informacijske i komunikacijske znanosti, Interdisciplinarne tehničke znanosti

Poveznice
Indeksiranost