Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi !

Experimental investigation of the NOx formation and control during the self-sustaining incineration process of N-containing VOCs (DIMETHYLFORMAMIDE) (CROSBI ID 303638)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Zheng, Shijie ; Qian, Yan ; Wang, Xuebin ; Vujanović, Milan ; Zhang, Yingjia ; Ur Rahman, Zia ; Yang, Penghui ; Duan, Fei ; Tan, Houzhang ; De Toni, Amir et al. Experimental investigation of the NOx formation and control during the self-sustaining incineration process of N-containing VOCs (DIMETHYLFORMAMIDE) // Fuel (Guildford), 315 (2022), 123149, 10. doi: 10.1016/j.fuel.2022.123149

Podaci o odgovornosti

Zheng, Shijie ; Qian, Yan ; Wang, Xuebin ; Vujanović, Milan ; Zhang, Yingjia ; Ur Rahman, Zia ; Yang, Penghui ; Duan, Fei ; Tan, Houzhang ; De Toni, Amir ; Li, Yang ; Mikulćić, Hrvoje

engleski

Experimental investigation of the NOx formation and control during the self-sustaining incineration process of N-containing VOCs (DIMETHYLFORMAMIDE)

An experimental investigation was conducted on N, N-dimethylformamide (DMF) pyrolysis at medium- temperature followed by extremely fuel-lean combustion. Furthermore, the NH3-SNCR (Selective non-catalytic reduction) method was studied to control NOx produced in DMF oxidation. Jet-stirred reactors (JSRs) were used in experimental investigation, because the uniform gas-phase mixing state formed by high-speed turbulence in JSR makes the validation of detailed models easier. The major gaseous species produced by pyrolysis, oxidation, and SNCR, namely H2, N2, CO, CO2, NOx, N2O, HCN, and CxHy, are quantified because the mechanism of NOx reduction will be elaborated using these species. The results show that the main nitrogen-containing pyrolysis products are HCN and N2, taking up 65% and 25% of DMF nitrogen, while carbon-containing pyrolysis products are mostly CO, CH4 and HCN. The HCN concentration increases significantly by 42.13% as pyrolysis time increases from 1.5 to 7 s. In oxidation, HCN and N2O concentration peaks are at 650 °C and 750 °C respectively, and NO concentration increases as temperature enhances when it is over 800 °C. A higher ratio of NO/N2O concentration was shown in oxidation of the higher equivalence ratio. The de-NOx efficiency of NH3- SNCR on oxidation flue gas peaked in range 825–875 °C, and as the NH3/NO ratio increased to more than 2.5, NO removal rate tended to reach the maximum of about 50%. The N2O removal rate rose significantly as temperature exceeded 900 °C in SNCR. The results shows the feasibility of NO emission control with DMF containing VOCs incineration in current industrial applications·NH3-SNCR at 825–875 °C shows significant de-NOx effect, but not a proper solution to limit N2O emission at the same time. This study could provide guidance for designing and optimizing the incinerator parameters and its de-NOx system, as well as provide validation data for future chemical kinetic model capable of predicting DMF combustion.

Dimethylformamide ; JSR ; Fuel-lean ; Pyrolysis ; Medium-temperature oxidation ; Nitrogen migration

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

315

2022.

123149

10

objavljeno

0016-2361

1873-7153

10.1016/j.fuel.2022.123149

Povezanost rada

Strojarstvo

Poveznice
Indeksiranost