Pregled bibliografske jedinice broj: 1153999
Adaptive intelligent agent for e-learning: First report on enabling technology solutions
Adaptive intelligent agent for e-learning: First report on enabling technology solutions // 44th MIPRO 2021 International Convention - Proceedings / Skala, Karolj (ur.).
Opatija: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2021. str. 1945-1949 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1153999 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Adaptive intelligent agent for e-learning: First
report on enabling technology solutions
Autori
Doljanin, Dora ; Pranjić, Luka ; Jelečević, Ljudevit ; Horvat, Marko
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
44th MIPRO 2021 International Convention - Proceedings
/ Skala, Karolj - Opatija : Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2021, 1945-1949
Skup
44th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2021)
Mjesto i datum
Opatija, Hrvatska, 27.09.2021. - 01.10.2021
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
digital learning ; adaptive learning ; emotion recognition ; pose estimation ; object detection
Sažetak
Because of the global COVID-19 pandemic, online learning has become the dominant teaching method. Moreover, a wide range of e-learning pedagogies are rapidly gaining importance, and in some cases emerging as the preferred approach in education over the traditional methods and techniques of classroom teaching. However much has to be done to efficiently assess student engagement and the learning curve. In this regard, we have proposed construction of an intelligent agent for personalized and adaptive assessment of learning performance based on methods for automated estimation of attention and emotion. We report on the first progress towards the development of the intelligent agent. Three classifiers were used in parallel to detect information about the progress of student engagement. Object detection in video is accomplished with YOLOv3, emotion detection from facial expressions using PAZ software library, and detection of head, arms, and upperbody orientation and position with OpenPose system. NimStim facial expression database, WIDER Attribute Dataset, and UPNA Head Pose Database were used for experimental validation of the individual classifiers. Our system attained the highest precision and recall of 79.13% and 94.15%, respectively, and the highest success rate of 59.56% in recognition of 6 discrete emotions from facial expressions.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Marko Horvat
(autor)