Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi !

SIMULATION OF GASOLINE ENGINE EQUIPPED WITH CYLINDER CYCLE-BY-CYCLE DEACTIVATION TECHNOLOGY UNDER DRIVING CONDITIONS (CROSBI ID 706937)

Prilog sa skupa u zborniku | izvorni znanstveni rad | međunarodna recenzija

Sjerić, Momir ; Kozarac, Darko ; Šagi, Goran ; Krajnović, Josip ; Kurtoić, Martin ; Jakoplić, Marijo SIMULATION OF GASOLINE ENGINE EQUIPPED WITH CYLINDER CYCLE-BY-CYCLE DEACTIVATION TECHNOLOGY UNDER DRIVING CONDITIONS // Proceeding of 38th FISITA World Congress. 2021. str. 1-7

Podaci o odgovornosti

Sjerić, Momir ; Kozarac, Darko ; Šagi, Goran ; Krajnović, Josip ; Kurtoić, Martin ; Jakoplić, Marijo

engleski

SIMULATION OF GASOLINE ENGINE EQUIPPED WITH CYLINDER CYCLE-BY-CYCLE DEACTIVATION TECHNOLOGY UNDER DRIVING CONDITIONS

The cylinder deactivation on the cycle-by-cycle basis represents the advanced engine technology which enables the firing cylinders to operate close to its best thermal efficiency due to reduced pumping losses. In such engine operation, the deactivation of cylinders from cycle to cycle is made by controlling the deactivation of intake and exhaust valves on each cylinder. The change of firing density over the time defines the output engine torque. The application of this engine technology can be performed in the spark ignition and compression ignition engines enabling the reduction of fuel consumption up to 15%. In this paper the naturally aspirated 4- cylinder spark ignition engine fueled by gasoline was numerically analyzed. The 1D/0D simulation model of engine performance was made in the commercial version of cycle simulation software AVL BOOST™, while the vehicle performance and driving cycles were performed separately using the external in-house code. Within the first part of study, the commercial spark ignition engine was simulated with the adoption of conventional engine load regulation (throttle position variation) over the entire operating range. In the second part, the engine performance in the same operating points was simulated where the desired part load conditions were achieved with different firing densities over the time. The results of specific fuel consumptions and raw exhaust emissions achieved within both parts were analyzed and compared. In the last part of study, the analysis of driving over the standardized vehicle driving cycles was made using the engine performance maps previously defined for the conventional and advanced load controlling. The simulation results achieved with the employment of cylinder deactivation technology over the driving conditions were compared with the results achieved by the throttle angle variation. This study quantifies the potential of advanced cylinder deactivation technology in reduction of the fuel consumption (CO2 emission) up to 12% for NEDC and 5.4% for WLTC driving cycle.

Cylinder deactivation ; Fuel saving ; Driving cycles ; Engine raw emissions

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o prilogu

1-7.

2021.

objavljeno

Podaci o matičnoj publikaciji

Podaci o skupu

FISITA World Congress

predavanje

14.09.2021-16.09.2021

Prag, Češka Republika

Povezanost rada

Strojarstvo