Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1144115

Advanced Satellite Remote Sensing for Urbanization Analysis


Gašparović, Mateo
Advanced Satellite Remote Sensing for Urbanization Analysis // Global Summit on Civil, Architectural and Environmental Engineering (GSCAEE-2021) conference book / Kodur, Venkatesh (ur.).
Barcelona: The Scientistt, 2021. str. 88-88 (pozvano predavanje, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 1144115 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Advanced Satellite Remote Sensing for Urbanization Analysis

Autori
Gašparović, Mateo

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
Global Summit on Civil, Architectural and Environmental Engineering (GSCAEE-2021) conference book / Kodur, Venkatesh - Barcelona : The Scientistt, 2021, 88-88

Skup
Global Summit on Civil, Architectural and Environmental Engineering (GSCAEE-2021)

Mjesto i datum
Barcelona, Španjolska, 19-21.07.2021

Vrsta sudjelovanja
Pozvano predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
remote sensing ; urbanization ; classification ; Landsat ; automatization

Sažetak
This research presents the advanced satellite remote sensing missions and methodology for data collection for detection and analysis of the urbanization, urban growth pattern as well as environment change. The research presents a methodology for determining the optimal satellite missions for the purpose of environmental change detection and urbanization monitoring. The research deals with the novel state-of-the-art methods for satellite imagery preprocessing, classification as well as automatic land-cover maps generation. Furthermore, the accuracy assessment measures of the land-cover classification will be discussed. The entire process of growth pattern detection and urbanization, as well as environment change analysis, will be shown in real case studies. Presented methods and techniques were based on the machine learning approach and novel automatization workflows and methodologies. The change detection analysis was made by comparing the land-cover maps made based on the 30 m bands of Landsat satellite imagery. For all cases, open-source data and open-source software were exclusively used to conduct this research. Therefore, presented procedures, techniques, and knowledge can be easily used, free of charge in the environment change detection as well as urbanization analysis for other areas in the world.

Izvorni jezik
Engleski

Znanstvena područja
Geodezija



POVEZANOST RADA


Ustanove:
Geodetski fakultet, Zagreb

Profili:

Avatar Url Mateo Gašparović (autor)


Citiraj ovu publikaciju

Gašparović, Mateo
Advanced Satellite Remote Sensing for Urbanization Analysis // Global Summit on Civil, Architectural and Environmental Engineering (GSCAEE-2021) conference book / Kodur, Venkatesh (ur.).
Barcelona: The Scientistt, 2021. str. 88-88 (pozvano predavanje, međunarodna recenzija, sažetak, znanstveni)
Gašparović, M. (2021) Advanced Satellite Remote Sensing for Urbanization Analysis. U: Kodur, V. (ur.)Global Summit on Civil, Architectural and Environmental Engineering (GSCAEE-2021) conference book.
@article{article, author = {Ga\v{s}parovi\'{c}, M.}, editor = {Kodur, V.}, year = {2021}, pages = {88-88}, keywords = {remote sensing, urbanization, classification, Landsat, automatization}, title = {Advanced Satellite Remote Sensing for Urbanization Analysis}, keyword = {remote sensing, urbanization, classification, Landsat, automatization}, publisher = {The Scientistt}, publisherplace = {Barcelona, \v{S}panjolska} }
@article{article, author = {Ga\v{s}parovi\'{c}, M.}, editor = {Kodur, V.}, year = {2021}, pages = {88-88}, keywords = {remote sensing, urbanization, classification, Landsat, automatization}, title = {Advanced Satellite Remote Sensing for Urbanization Analysis}, keyword = {remote sensing, urbanization, classification, Landsat, automatization}, publisher = {The Scientistt}, publisherplace = {Barcelona, \v{S}panjolska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font