Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1140436

Estimation of materials' parameters of strain-life fatigue behavior using empirical and artificial neural networks based approach


Marohnić, Tea; Basan, Robert
Estimation of materials' parameters of strain-life fatigue behavior using empirical and artificial neural networks based approach // 26th International Conference on Fracture and Structural Integrity
Torino, Italija, 2021. (predavanje, međunarodna recenzija, pp prezentacija, znanstveni)


CROSBI ID: 1140436 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Estimation of materials' parameters of strain-life fatigue behavior using empirical and artificial neural networks based approach

Autori
Marohnić, Tea ; Basan, Robert

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, pp prezentacija, znanstveni

Skup
26th International Conference on Fracture and Structural Integrity

Mjesto i datum
Torino, Italija, 26-31.05.2021

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
estimation methods ; monotonic properties ; strain-life fatigue behavior ; artificial neural networks

Sažetak
Estimation of fatigue lives and material behavior, along with determination of corresponding material parameters, is needed in early design stages that precede experimental testing. Since the experimental characterization is the most accurate, but also time and resource consuming, a number of methods for estimation of fatigue parameters from easily obtainable monotonic properties exist in the literature. Most commonly used methodologies for estimation of strain life parameters nowadays include widely used empirical estimation methods and machine-learning based methods, mainly artificial neural networks (ANNs). The latter, when correctly developed, facilitate capturing complex relationships among input and target variables. ANNs were developed for estimation of strain-life parameters of unalloyed, low-alloy and high-alloy steels on the basis of monotonic properties which were previously determined as relevant by performing a detailed statistical analysis. Previous statistical analyses indicated that different monotonic properties are statistically significant for estimation of fatigue parameters of unalloyed, low- and high-alloy steel subgroups. Results were evaluated on an independent set of data, both for aforementioned groups of steels and for individual materials. Evaluations showed that when developed correctly, ANNs are a promising method for estimation of materials’ strain-life parameters and behavior of particular material. Should more data be included in developing of ANNs for the given purpose, a fast, robust and efficient solution can be obtained and used for the estimation of strain- life parameters and behavior of metallic materials.

Izvorni jezik
Engleski

Znanstvena područja
Strojarstvo



POVEZANOST RADA


Projekti:
HRZZ-IP-2020-02-5764 - Razvoj modela za procjenu ponašanja materijala temeljenih na strojnom učenju (MADEIRA) (Basan, Robert, HRZZ - 2020-02) ( POIROT)
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-116 - Istraživanje i razvoj prediktivnih modela ponašanja konstrukcijskih materijala temeljenih na metodama strojnog učenja (Basan, Robert, NadSve - UNIRI PROJEKTI) ( POIROT)

Ustanove:
Tehnički fakultet, Rijeka

Profili:

Avatar Url Tea Marohnić (autor)

Avatar Url Robert Basan (autor)


Citiraj ovu publikaciju

Marohnić, Tea; Basan, Robert
Estimation of materials' parameters of strain-life fatigue behavior using empirical and artificial neural networks based approach // 26th International Conference on Fracture and Structural Integrity
Torino, Italija, 2021. (predavanje, međunarodna recenzija, pp prezentacija, znanstveni)
Marohnić, T. & Basan, R. (2021) Estimation of materials' parameters of strain-life fatigue behavior using empirical and artificial neural networks based approach. U: 26th International Conference on Fracture and Structural Integrity.
@article{article, year = {2021}, keywords = {estimation methods, monotonic properties, strain-life fatigue behavior, artificial neural networks}, title = {Estimation of materials' parameters of strain-life fatigue behavior using empirical and artificial neural networks based approach}, keyword = {estimation methods, monotonic properties, strain-life fatigue behavior, artificial neural networks}, publisherplace = {Torino, Italija} }
@article{article, year = {2021}, keywords = {estimation methods, monotonic properties, strain-life fatigue behavior, artificial neural networks}, title = {Estimation of materials' parameters of strain-life fatigue behavior using empirical and artificial neural networks based approach}, keyword = {estimation methods, monotonic properties, strain-life fatigue behavior, artificial neural networks}, publisherplace = {Torino, Italija} }




Contrast
Increase Font
Decrease Font
Dyslexic Font