Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi !

Tracking the transition to agriculture in Southern Europe through ancient DNA analysis of dental calculus (CROSBI ID 297318)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Ottoni, Claudio ; Borić, Dušan ; Cheronet, Olivia ; Sparacello, Vitale ; Dori, Irene ; Coppa, Alfredo ; Antonović, Dragana ; Vujević, Dario ; Price, T. Douglas ; Pinhasi, Ron et al. Tracking the transition to agriculture in Southern Europe through ancient DNA analysis of dental calculus // Proceedings of the National Academy of Sciences of the United States of America, 118 (2021), 32; 1, 11. doi: 10.1073/pnas.2102116118

Podaci o odgovornosti

Ottoni, Claudio ; Borić, Dušan ; Cheronet, Olivia ; Sparacello, Vitale ; Dori, Irene ; Coppa, Alfredo ; Antonović, Dragana ; Vujević, Dario ; Price, T. Douglas ; Pinhasi, Ron ; Cristiani, Emanuela

engleski

Tracking the transition to agriculture in Southern Europe through ancient DNA analysis of dental calculus

Archaeological dental calculus, or mineralized plaque, is a key tool to track the evolution of oral microbiota across time in response to processes that impacted our culture and biology, such as the rise of farming during the Neolithic. However, the extent to which the human oral flora changed from prehistory until present has remained elusive due to the scarcity of data on the microbiomes of prehistoric humans. Here, we present our reconstruction of oral microbiomes via shotgun metagenomics of dental calculus in 44 ancient foragers and farmers from two regions playing a pivotal role in the spread of farming across Europe—the Balkans and the Italian Peninsula. We show that the introduction of farming in Southern Europe did not alter significantly the oral microbiomes of local forager groups, and it was in particular associated with a higher abundance of the species Olsenella sp. oral taxon 807. The human oral environment in prehistory was dominated by a microbial species, Anaerolineaceae bacterium oral taxon 439, that diversified geographically. A Near Eastern lineage of this bacterial commensal dispersed with Neolithic farmers and replaced the variant present in the local foragers. Our findings also illustrate that major taxonomic shifts in human oral microbiome composition occurred after the Neolithic and that the functional profile of modern humans evolved in recent times to develop peculiar mechanisms of antibiotic resistance that were previously absent.

ancient DNA ; dental calculus ; metagenomics ; Southern Europe

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

118 (32)

2021.

1

11

objavljeno

0027-8424

1091-6490

10.1073/pnas.2102116118

Povezanost rada

Arheologija

Poveznice
Indeksiranost