Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi !

Power System Transient Stability Assessment Using Stacked Autoencoder and Voting Ensemble (CROSBI ID 295057)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Sarajcev, Petar ; Kunac, Antonijo ; Petrovic, Goran ; Despalatovic, Marin Power System Transient Stability Assessment Using Stacked Autoencoder and Voting Ensemble // Energies (Basel), 14 (2021), 11; 3148, 26. doi: 10.3390/en14113148

Podaci o odgovornosti

Sarajcev, Petar ; Kunac, Antonijo ; Petrovic, Goran ; Despalatovic, Marin

engleski

Power System Transient Stability Assessment Using Stacked Autoencoder and Voting Ensemble

Increased integration of renewable energy sources brings new challenges to the secure and stable power system operation. Operational challenges emanating from the reduced system inertia, in particular, will have important repercussions on the power system transient stability assessment (TSA). At the same time, a rise of the “big data” in the power system, from the development of wide area monitoring systems, introduces new paradigms for dealing with these challenges. Transient stability concerns are drawing attention of various stakeholders as they can be the leading causes of major outages. The aim of this paper is to address the power system TSA problem from the perspective of data mining and machine learning (ML). A novel 3.8 GB open dataset of time-domain phasor measurements signals is built from dynamic simulations of the IEEE New England 39-bus test case power system. A data processing pipeline is developed for features engineering and statistical post-processing. A complete ML model is proposed for the TSA analysis, built from a denoising stacked autoencoder and a voting ensemble classifier. Ensemble consist of pooling predictions from a support vector machine and a random forest. Results from the classifier application on the test case power system are reported and discussed. The ML application to the TSA problem is promising, since it is able to ingest huge amounts of data while retaining the ability to generalize and support real-time decisions.

power system stability ; transient stability assessment ; transient stability index ; machine learning ; deep learning ; autoencoder ; transfer learning ; ensemble ; dataset

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

14 (11)

2021.

3148

26

objavljeno

1996-1073

10.3390/en14113148

Povezanost rada

Elektrotehnika

Poveznice
Indeksiranost