Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi !

Design, synthesis, antibacterial evaluation, and computational studies of hybrid oxothiazolidin–1,2,4‐triazole scaffolds (CROSBI ID 292691)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Pathak, Prateek ; Novak, Jurica ; Shukla, Parjanya K. ; Grishina, Maria ; Potemkin, Vladimir ; Verma, Amita Design, synthesis, antibacterial evaluation, and computational studies of hybrid oxothiazolidin–1,2,4‐triazole scaffolds // Archiv der pharmazie, 354 (2021), 6; e2000473, 18. doi: 10.1002/ardp.202000473

Podaci o odgovornosti

Pathak, Prateek ; Novak, Jurica ; Shukla, Parjanya K. ; Grishina, Maria ; Potemkin, Vladimir ; Verma, Amita

engleski

Design, synthesis, antibacterial evaluation, and computational studies of hybrid oxothiazolidin–1,2,4‐triazole scaffolds

Bacterial infections are a serious threat to human health due to the development of resistance against the presently used antibiotics. The problem of growing and widespread antibiotic resistance is only getting worse with the shortage of new classes of antibiotics, creating a substantial unmet medical need in the treatment of serious bacterial infections. Therefore, in the present work, we report 18 novel hybrid thiazolidine– 1, 2, 4‐triazole derivatives as DNA gyrase inhibitors. The derivatives were synthesized by multistep organic synthesis and characterized by spectroscopic methods (1H and 13C nuclear magnetic resonance and mass spectroscopy). The derivatives were tested for DNA gyrase inhibition, and the result emphasized that the synthesized derivatives have a tendency to inhibit the function of DNA gyrase. Furthermore, the compounds were also tested for antibacterial activity against three Gram‐ positive (Bacillus subtilis [NCIM 2063], Bacillus cereus [NCIM 2156], Staphylococcus aureus [NCIM 2079]) and two Gram‐negative (Escherichia coli [NCIM 2065], Proteus vulgaris [NCIM 2027]) bacteria. The derivatives showed a significant‐to‐moderate antibacterial activity with noticeable antibiofilm efficacy. Quantitative structure–activity relationship (QSAR), ADME (absorption, distribution, metabolism, elimination) calculation, molecular docking, radial distribution function, and 2D fingerprinting were also performed to elucidate fundamental structural fragments essential for their bioactivity. These studies suggest that the derivatives 10b and 10n have lead antibacterial properties with significant DNA gyrase inhibitory efficacy, and they can serve as a starting scaffold for the further development of new broad‐spectrum antibacterial agents.

antibacterial activity ; DNA gyrase inhibitors ; docking study ; hybrid 1, 2, 4‐triazole ; QSAR study

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

354 (6)

2021.

e2000473

18

objavljeno

0365-6233

1521-4184

10.1002/ardp.202000473

Povezanost rada

Povezane osobe



Farmacija, Kemija

Poveznice
Indeksiranost