Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi

Quinuclidine-Based Carbamates as Potential CNS Active Compounds (CROSBI ID 292340)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Matošević, Ana ; Radman Kastelic, Andreja ; Mikelić, Ana ; Zandona, Antonio ; Katalinić, Maja ; Primožič, Ines ; Bosak, Anita ; Hrenar, Tomica Quinuclidine-Based Carbamates as Potential CNS Active Compounds // Pharmaceutics, 13 (2021), 3; 420, 15. doi: 10.3390/pharmaceutics13030420

Podaci o odgovornosti

Matošević, Ana ; Radman Kastelic, Andreja ; Mikelić, Ana ; Zandona, Antonio ; Katalinić, Maja ; Primožič, Ines ; Bosak, Anita ; Hrenar, Tomica

engleski

Quinuclidine-Based Carbamates as Potential CNS Active Compounds

The treatment of central nervous system (CNS) diseases related to the decrease of neurotransmitter acetylcholine in neurons is based on compounds that prevent or disrupt the action of acetylcholinesterase and butyrylcholinesterase. A series of thirteen quinuclidine carbamates were designed using quinuclidine as the structural base and a carbamate group to ensure the covalent binding to the cholinesterase, which were synthesized and tested as potential human acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors. The synthesized compounds differed in the substituents on the amino and carbamoyl parts of the molecule. All of the prepared carbamates displayed a time-dependent inhibition with overall inhibition rate constants in the 103 M−1 min−1 range. None of the compounds showed pronounced selectivity for any of the cholinesterases. The in silico determined ability of compounds to cross the blood–brain barrier (BBB) revealed that six compounds should be able to pass the BBB by passive transport. In addition, the compounds did not show toxicity toward cells that represented the main models of individual organs. By machine learning, the most optimal regression models for the prediction of bioactivity were established and validated. Models for AChE and BChE described 89 and 90% of the total variations among the data, respectively. These models facilitated the prediction and design of new and more potent inhibitors. Altogether, our study confirmed that quinuclidinium carbamates are promising candidates for further development as CNS-active drugs, particularly for Alzheimer’s disease treatment.

Alzheimer’s disease ; acetylcholinesterase ; butyrylcholinesterase ; inhibition ; covalent binding ; cytotoxicity

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

13 (3)

2021.

420

15

objavljeno

1999-4923

10.3390/pharmaceutics13030420

Povezanost rada

Biologija, Farmacija, Kemija

Poveznice
Indeksiranost