Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1116108

Advanced Data Analytics in Logistics Demand Forecasting


Agatić, Adrijana; Tijan, Edvard; Poletan Jugović, Tanja; Hess, Svjetlana
Advanced Data Analytics in Logistics Demand Forecasting // MIPRO 2021 44th Conference Proceedings / Skala, Karolj (ur.).
Opatija: Croatian Society for Information, Communication and Electronic Technology - MIPRO, 2021. str. 1582-1587 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1116108 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Advanced Data Analytics in Logistics Demand Forecasting

Autori
Agatić, Adrijana ; Tijan, Edvard ; Poletan Jugović, Tanja ; Hess, Svjetlana

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
MIPRO 2021 44th Conference Proceedings / Skala, Karolj - Opatija : Croatian Society for Information, Communication and Electronic Technology - MIPRO, 2021, 1582-1587

Skup
Digital Economy / Digital Society (MIPRO 2021 44th Conference)

Mjesto i datum
Opatija, Hrvatska, 27.09.-01.10.2021

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
logistics demand forecasting ; Advanced Data Analytics ; Big Data ; Artificial Intelligence ; Machine Learning

Sažetak
The logistics demand forecasting is increasingly influenced by digitalization processes in logistics business. Traditional approach to logistics demand forecasting based on human expertise and statistical assessment is still very present, but the use of Big Data, Artificial Intelligence and Machine Learning becomes more prominent. By using these technologies, logistics demand forecasting becomes not only more reliable but also more agile and self-adjusting, with better insight into changing market conditions in the real-time perspective. In this paper, the Authors research the evolution of Data Analytics in logistics demand forecasting. and provide an insight to the features of Big Data, Artificial Intelligence and Machine Learning used for Advanced Data Analytics in logistics demand forecasting.

Izvorni jezik
Engleski

Znanstvena područja
Tehnologija prometa i transport, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Ustanove:
Pomorski fakultet, Rijeka


Citiraj ovu publikaciju

Agatić, Adrijana; Tijan, Edvard; Poletan Jugović, Tanja; Hess, Svjetlana
Advanced Data Analytics in Logistics Demand Forecasting // MIPRO 2021 44th Conference Proceedings / Skala, Karolj (ur.).
Opatija: Croatian Society for Information, Communication and Electronic Technology - MIPRO, 2021. str. 1582-1587 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Agatić, A., Tijan, E., Poletan Jugović, T. & Hess, S. (2021) Advanced Data Analytics in Logistics Demand Forecasting. U: Skala, K. (ur.)MIPRO 2021 44th Conference Proceedings.
@article{article, editor = {Skala, K.}, year = {2021}, pages = {1582-1587}, keywords = {logistics demand forecasting, Advanced Data Analytics, Big Data, Artificial Intelligence, Machine Learning}, title = {Advanced Data Analytics in Logistics Demand Forecasting}, keyword = {logistics demand forecasting, Advanced Data Analytics, Big Data, Artificial Intelligence, Machine Learning}, publisher = {Croatian Society for Information, Communication and Electronic Technology - MIPRO}, publisherplace = {Opatija, Hrvatska} }
@article{article, editor = {Skala, K.}, year = {2021}, pages = {1582-1587}, keywords = {logistics demand forecasting, Advanced Data Analytics, Big Data, Artificial Intelligence, Machine Learning}, title = {Advanced Data Analytics in Logistics Demand Forecasting}, keyword = {logistics demand forecasting, Advanced Data Analytics, Big Data, Artificial Intelligence, Machine Learning}, publisher = {Croatian Society for Information, Communication and Electronic Technology - MIPRO}, publisherplace = {Opatija, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font