Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi

Implementation of Optimum Additive Technologies Design for Unmanned Aerial Vehicle Take-Off Weight Increase (CROSBI ID 291478)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Maričić, Sven ; Haber, Iva Mrša ; Veljović, Ivan ; Palunko, Ivana Implementation of Optimum Additive Technologies Design for Unmanned Aerial Vehicle Take-Off Weight Increase // Eureka: Physics and engineering, 6 (2020), 50-60. doi: 10.21303/2461-4262.2020.001514

Podaci o odgovornosti

Maričić, Sven ; Haber, Iva Mrša ; Veljović, Ivan ; Palunko, Ivana

engleski

Implementation of Optimum Additive Technologies Design for Unmanned Aerial Vehicle Take-Off Weight Increase

The aim of this paper is to investigate the possibility of drone optimization by selecting and testing the best material suitable for additive manufacturing technology and generative design approach, i. e. shape optimization. The use of additive manufacturing technology enables the creation of models of more complex shapes that are difficult or impossible to produce with conventional processing methods. The complex and unconventional design of the drone body can open up many possibilities for weight reduction while maintaining the strength of the drone body. By using 3D printing in addition to FEM (Finite Element Method) analysis, and generative design it can identify areas of the drone body that are overdrawn, allowing it to either lift off material or simply change the design at these areas. Choosing the right material for this application is crucial in order to optimize the mechanical properties of the material with weight, material cost, printability and availability of the material and the 3D printing method, while at the same time reducing environmental pollution. The goal is to reduce the drone mass by 15–20 % using generative design tools. Mass is an important segment when prototyping a drone. If the drone is too heavy, more lift power is needed to keep the drone in the air, so the propellers have to turn faster and use more energy. Consequently, the reduction of drone mass should increase the take- off weight. In this article 5 commercial drones of similar characteristics are compared with the final proposal of our 3D printed drone (Prototype 1). The rotor distance between the drones, the weight of the electric motor and the take-off weight are compared. The goal was to produce a prototype with a big rotor distance-to-weight ratio, and take-off weight bigger than observed drones have. The defined goal function was optimized in order to evaluate characteristics of 12 different 3D printed materials. Following properties: ultimate strength, stiffness, durability, printability of the material, and required bed and extruder temperature for printing were taken in consideration to select optimal material. Polycarbonate proved to be the best choice for 3D printing UAVs

additive technologies ; unmanned aerial vehicle ; shape optimization ; generative design

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

6

2020.

50-60

objavljeno

2461-4254

10.21303/2461-4262.2020.001514

Povezanost rada

Interdisciplinarne tehničke znanosti, Temeljne tehničke znanosti

Poveznice
Indeksiranost