Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1112265

Remote sensing data driven bathing water quality assessment using sentinel-3


Antonia Senta, Ljiljana Šerić
Remote sensing data driven bathing water quality assessment using sentinel-3 // Indonesian journal of electrical engineering and computer science, 21 (2021), 3; 1634-1647 doi:10.11591/ijeecs.v21.i3.pp1634-1647 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1112265 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Remote sensing data driven bathing water quality assessment using sentinel-3

Autori
Antonia Senta, Ljiljana Šerić

Izvornik
Indonesian journal of electrical engineering and computer science (2502-4752) 21 (2021), 3; 1634-1647

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Remote sensing ; Bathing water quality ; Machine learning ; KNN ; DT ; Sentinel-3

Sažetak
In this paper we are investigating the possibility of usage of remote sensing satellite data, more precisely sentinel-3 OLCI and SLSTR data, for assessment of bathing water quality. In this research we used data driven approach and analysis of data in order to pinpoint aspects of remote sensing data that can be useful for bathing water quality assessment. For this purpose we collected satellite images for period from start of June till end of September of 2019 and results of in- situ measurement for the same period. Results of in-situ measurement were correlated with satellite images bands and analyzed. We propose a simple method for rapid assessment of possible deterioration of bathing water quality to be used by public health authorities for better planning of in situ measurements. Results of implementation of predictive models based on k-nearest neighbour (KNN) and decision tree (DT) are described.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
EK-EFRR-KK.01.1.1.04.0064 - Razvoj tehnologije za procjenu autopurifikacijskih sposobnosti priobalnih voda (CAAT) (Andričević, Roko, EK - KK.01.1.1.04. Ulaganje u znanost i inovacije-Prvi poziv) ( POIROT)

Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split

Profili:

Avatar Url Ljiljana Šerić (autor)

Avatar Url Antonia Ivanda (autor)

Poveznice na cjeloviti tekst rada:

doi ijeecs.iaescore.com ijeecs.iaescore.com

Citiraj ovu publikaciju:

Antonia Senta, Ljiljana Šerić
Remote sensing data driven bathing water quality assessment using sentinel-3 // Indonesian journal of electrical engineering and computer science, 21 (2021), 3; 1634-1647 doi:10.11591/ijeecs.v21.i3.pp1634-1647 (međunarodna recenzija, članak, znanstveni)
Antonia Senta, L. (2021) Remote sensing data driven bathing water quality assessment using sentinel-3. Indonesian journal of electrical engineering and computer science, 21 (3), 1634-1647 doi:10.11591/ijeecs.v21.i3.pp1634-1647.
@article{article, author = {Antonia Senta, Ljiljana \v{S}eri\'{c}}, year = {2021}, pages = {1634-1647}, DOI = {10.11591/ijeecs.v21.i3.pp1634-1647}, keywords = {Remote sensing, Bathing water quality, Machine learning, KNN, DT, Sentinel-3}, journal = {Indonesian journal of electrical engineering and computer science}, doi = {10.11591/ijeecs.v21.i3.pp1634-1647}, volume = {21}, number = {3}, issn = {2502-4752}, title = {Remote sensing data driven bathing water quality assessment using sentinel-3}, keyword = {Remote sensing, Bathing water quality, Machine learning, KNN, DT, Sentinel-3} }
@article{article, author = {Antonia Senta, Ljiljana \v{S}eri\'{c}}, year = {2021}, pages = {1634-1647}, DOI = {10.11591/ijeecs.v21.i3.pp1634-1647}, keywords = {Remote sensing, Bathing water quality, Machine learning, KNN, DT, Sentinel-3}, journal = {Indonesian journal of electrical engineering and computer science}, doi = {10.11591/ijeecs.v21.i3.pp1634-1647}, volume = {21}, number = {3}, issn = {2502-4752}, title = {Remote sensing data driven bathing water quality assessment using sentinel-3}, keyword = {Remote sensing, Bathing water quality, Machine learning, KNN, DT, Sentinel-3} }

Časopis indeksira:


  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font