Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi

Experimental Study of Different Silicon Sensor Options for the Upgrade of the CMS Outer Tracker (CROSBI ID 290129)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

(CMS Collaboration) Steinbruck, Georg ; ... ; Brigljević, Vuko ; Ceci, Saša ; Ferenček, Dinko ; Majumder, Devdatta ; Roguljić, Matej ; Starodumov, Andrey ; Šuša, Tatjana ; ... et al. Experimental Study of Different Silicon Sensor Options for the Upgrade of the CMS Outer Tracker // Journal of Instrumentation, 15 (2020), 04; P04017, 34. doi: 10.1088/1748-0221/15/04/P04017

Podaci o odgovornosti

Steinbruck, Georg ; ... ; Brigljević, Vuko ; Ceci, Saša ; Ferenček, Dinko ; Majumder, Devdatta ; Roguljić, Matej ; Starodumov, Andrey ; Šuša, Tatjana ; ... ; Padeken, K.O.

CMS Collaboration

engleski

Experimental Study of Different Silicon Sensor Options for the Upgrade of the CMS Outer Tracker

During the high-luminosity phase of the LHC (HL-LHC), planned to start in 2027, the accelerator is expected to deliver an instantaneous peak luminosity of up to 7.5 x 10(34) cm(-2) s(-1). A total integrated luminosity of 3000 or even 4000 fb(-1) is foreseen to be delivered to the general purpose detectors ATLAS and CMS over a decade, thereby increasing the discovery potential of the LHC experiments significantly. The CMS detector will undergo a major upgrade for the HL-LHC, with entirely new tracking detectors consisting of an Outer Tracker and Inner Tracker. However, the new tracking system will be exposed to a significantly higher radiation than the current tracker, requiring new radiation-hard sensors. CMS initiated an extensive irradiation and measurement campaign starting in 2009 to systematically compare the properties of different silicon materials and design choices for the Outer Tracker sensors. Several test structures and sensors were designed and implemented on 18 different combinations of wafer materials, thicknesses, and production technologies. The devices were electrically characterized before and after irradiation with neutrons, and with protons of different energies, with fluences corresponding to those expected at different radii of the CMS Outer Tracker after 3000 fb(-1). The tests performed include studies with beta sources, lasers, and beam scans. This paper compares the performance of different options for the HL-LHC silicon sensors with a focus on silicon bulk material and thickness.

High energy physics ; Experimental particle physics ; LHC ; CMS ; Particle Physics Experiments ; Physics ; Vector boson scattering ; Hadron-Hadron scattering (experiments) ; Supersymmetry ; Higgs physics ; Particle and resonance production ; B physics ; Particle correlations and fluctuations ; Quarkonium ; Elementary Particles and Fields ; Beyond Standard Model ; Jets ; QCD ; Top physics ; Diboson ; Electroweak ; CKM matrix ; Top quark ; Large detector-systems performance ; Pattern recognition

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

15 (04)

2020.

P04017

34

objavljeno

1748-0221

10.1088/1748-0221/15/04/P04017

Povezanost rada

Fizika

Poveznice
Indeksiranost