Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi !

Magnetic dipole excitations based on the relativistic nuclear energy density functional (CROSBI ID 288676)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Kružić, G. ; Oishi, T. ; Vale, D. ; Paar, N. Magnetic dipole excitations based on the relativistic nuclear energy density functional // Physical review. C, 102 (2020), 4; 044315-1-044315-13. doi: 10.1103/physrevc.102.044315

Podaci o odgovornosti

Kružić, G. ; Oishi, T. ; Vale, D. ; Paar, N.

engleski

Magnetic dipole excitations based on the relativistic nuclear energy density functional

Magnetic dipole (M1) excitations constitute not only a fundamental mode of nucleonic transitions, but they are also relevant for nuclear astrophysics applications. We have established a theory framework for the description of M1 transitions based on the relativistic nuclear energy density functional. For this purpose, the relativistic quasiparticle random phase approximation (RQRPA) is established using density-dependent point coupling interaction DD-PC1, supplemented with the isovector-pseudovector interaction channel in order to study unnatural parity transitions. The introduced framework has been validated using the M1 sum rule for core-plus-two-nucleon systems, and employed in studies of the spin, orbital, isoscalar, and isovector M1 transition strengths that relate to the electromagnetic probe in magic nuclei Ca-48 and Pb-208 and open shell nuclei Ca-42 and Ti-50. In these systems, the isovector spin-flip M1 transition is dominant, mainly between one or two spin-orbit partner states. It is shown that pairing correlations have a significant impact on the centroid energy and major peak position of the M1 mode. The M1 excitations could provide an additional constraint to improve nuclear energy density functionals in the future studies.

magnetic transitions

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

102 (4)

2020.

044315-1-044315-13

objavljeno

2469-9985

2469-9993

10.1103/physrevc.102.044315

Povezanost rada

Fizika

Poveznice
Indeksiranost