Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi !

Implementation of the three-dimensional printing technology in treatment of bone tumours: a case series (CROSBI ID 287016)

Prilog u časopisu | stručni rad | međunarodna recenzija

Šimić Jovičić, Marijana ; Vuletić, Filip ; Ribičić, Tomislav ; Šimunić, Sven ; Petrović, Tadija ; Kolundžić, Robert Implementation of the three-dimensional printing technology in treatment of bone tumours: a case series // International orthopaedics, / (2020), /; 32901331, 5. doi: 10.1007/s00264-020-04787-4

Podaci o odgovornosti

Šimić Jovičić, Marijana ; Vuletić, Filip ; Ribičić, Tomislav ; Šimunić, Sven ; Petrović, Tadija ; Kolundžić, Robert

engleski

Implementation of the three-dimensional printing technology in treatment of bone tumours: a case series

Purpose: With the ability to overcome specific anatomical and pathological challenges, 3D printing technology is setting itself as an important tool in patient-specific orthopaedics, delivering anatomical models, patient-specific instruments, and custom-made implants. One of the most demanding procedures in limb salvage surgery is the reconstruction of bony defects after tumour resection. Even though still limited in clinical practice, early results of the use of 3D technology are gradually revealing its potentially huge impact in bone tumour surgery. Here, we present a case series illustrating our experience with the use of 3D printing technology in the reconstruction of bone defects after tumour resection, and its impact on cosmesis and quality of life. Methods: We performed a retrospective analysis of 11 patients in whom a custom-made 3D-printed prosthesis was used to reconstruct a bone defect after resection for a bone tumour. Ten out of 11 patients were children (aged between 5 and 16 years) with osteosarcoma or Ewing sarcoma of the pelvis (2 children) or the arm (8 children), and one patient was a 67-year-old lady with a chondrosarcoma of the pelvis. All underwent wide resections resulting in considerable bone defects necessitating further reconstruction. Results: Custom-made implants were extremely useful both in reconstruction of bone defects and in terms of cosmesis, recovery facilitation, and quality of life. In this respect, pelvic and humeral reconstructions with 3D-printed custom implants particularly showed a great potential. The mean follow-up was 33 months. Four patients died of disease (36%) and overall the major and minor complication rate was 54% (6 out of 11 patients). Three patients had implant dislocation (27% [3/11 cases]), one had leg-compartment syndrome, and one patient reported limited range of motion. Only two out of 11 patients developed local recurrence. Conclusion: Use of 3D customized implant helped us achieve two major goals in orthopaedic oncology-clear surgical resection and functional recovery with a good quality of life. Large studies with long-term follow-up are needed to reveal the value and future of 3D printing in orthopaedic oncology.

3D printing technology ; Bone reconstruction ; Bone tumour surgery ; Limb salvation ; Patient-specific orthopaedics.

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

/ (/)

2020.

32901331

5

objavljeno

1432-5195

0341-2695

10.1007/s00264-020-04787-4

Povezanost rada

nije evidentirano

Poveznice