Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1095261

Separation of Quark Flavors Using Deeply Virtual Compton Scattering Data


Čuić, Marija; Kumerički, Krešimir; Schäfer, Andreas
Separation of Quark Flavors Using Deeply Virtual Compton Scattering Data // Physical review letters, 125 (2020), 23; 232005, 5 doi:10.1103/physrevlett.125.232005 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1095261 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Separation of Quark Flavors Using Deeply Virtual Compton Scattering Data

Autori
Čuić, Marija ; Kumerički, Krešimir ; Schäfer, Andreas

Izvornik
Physical review letters (0031-9007) 125 (2020), 23; 232005, 5

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Hadron Structure, Quarks, Generalized Parton Distributions, Neural Networks

Sažetak
Using the available data on deeply virtual Compton scattering (DVCS) off protons and utilizing neural networks enhanced by the dispersion relation constraint, we determine six out of eight leading Compton form factors in the valence quark kinematic region. Furthermore, adding recent data on DVCS off neutrons, we separate contributions of up and down quarks to the dominant form factor, thus paving the way towards a three-dimensional picture of the nucleon.

Izvorni jezik
Engleski

Znanstvena područja
Fizika



POVEZANOST RADA


Projekti:
HRZZ-IP-2019-04-9709 - Razotkrivanje strukture hadrona pomoću tvrdih ekskluzivnih procesa (REVESTRUCTURE) (Passek-Kumerički, Kornelija, HRZZ - 2019-04) ( POIROT)
EK-H2020-824093 - The strong interaction at the frontier of knowledge: fundamental research and applications (STRONG-2020) (Korolija, Milorad; Bosnar, Damir; Passek-Kumerički, Kornelija, EK - H2020-INFRAIA-2018-1) ( POIROT)

Ustanove:
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Krešimir Kumerički (autor)

Avatar Url Marija Čuić (autor)

Citiraj ovu publikaciju

Čuić, Marija; Kumerički, Krešimir; Schäfer, Andreas
Separation of Quark Flavors Using Deeply Virtual Compton Scattering Data // Physical review letters, 125 (2020), 23; 232005, 5 doi:10.1103/physrevlett.125.232005 (međunarodna recenzija, članak, znanstveni)
Čuić, M., Kumerički, K. & Schäfer, A. (2020) Separation of Quark Flavors Using Deeply Virtual Compton Scattering Data. Physical review letters, 125 (23), 232005, 5 doi:10.1103/physrevlett.125.232005.
@article{article, year = {2020}, pages = {5}, DOI = {10.1103/physrevlett.125.232005}, chapter = {232005}, keywords = {Hadron Structure, Quarks, Generalized Parton Distributions, Neural Networks}, journal = {Physical review letters}, doi = {10.1103/physrevlett.125.232005}, volume = {125}, number = {23}, issn = {0031-9007}, title = {Separation of Quark Flavors Using Deeply Virtual Compton Scattering Data}, keyword = {Hadron Structure, Quarks, Generalized Parton Distributions, Neural Networks}, chapternumber = {232005} }
@article{article, year = {2020}, pages = {5}, DOI = {10.1103/physrevlett.125.232005}, chapter = {232005}, keywords = {Hadron Structure, Quarks, Generalized Parton Distributions, Neural Networks}, journal = {Physical review letters}, doi = {10.1103/physrevlett.125.232005}, volume = {125}, number = {23}, issn = {0031-9007}, title = {Separation of Quark Flavors Using Deeply Virtual Compton Scattering Data}, keyword = {Hadron Structure, Quarks, Generalized Parton Distributions, Neural Networks}, chapternumber = {232005} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Uključenost u ostale bibliografske baze podataka:


  • INSPIRE-HEP


Citati





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font