Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi

Proximity-induced magnetization in graphene: Towards efficient spin gating (CROSBI ID 285706)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Bosnar, Mihovil ; Lončarić, Ivor ; Lazić, Predrag ; Belashchenko, Kiril D. ; Žutić, Igor Proximity-induced magnetization in graphene: Towards efficient spin gating // Physical review materials, 4 (2020), 11; 114006, 9. doi: 10.1103/physrevmaterials.4.114006

Podaci o odgovornosti

Bosnar, Mihovil ; Lončarić, Ivor ; Lazić, Predrag ; Belashchenko, Kiril D. ; Žutić, Igor

engleski

Proximity-induced magnetization in graphene: Towards efficient spin gating

Gate-tunable spin-dependent properties could be induced in graphene at room temperature through the magnetic proximity effect by placing it in contact with a metallic ferromagnet. Because strong chemical bonding with the metallic substrate makes gating ineffective, an intervening passivation layer is needed. Previously considered passivation layers result in a large shift of the Dirac point away from the Fermi level, so that unrealistically large gate fields are required to tune the spin polarization in graphene (Gr). We show that a monolayer of Au or Pt used as the passivation layer between Co and graphene brings the Dirac point closer to the Fermi level. In the Co/Pt/Gr system the proximity-induced spin polarization in graphene and its gate control are strongly enhanced by the presence of a surface band near the Fermi level. Furthermore, the shift of the Dirac point could be eliminated entirely by selecting submonolayer coverage in the passivation layer. Our findings open a path towards experimental realization of an optimized two-dimensional system with gate-tunable spin-dependent properties.

Density Functional Theory ; Graphene ; Magnetic Proximity Effect

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

4 (11)

2020.

114006

9

objavljeno

2475-9953

10.1103/physrevmaterials.4.114006

Povezanost rada

Fizika

Poveznice
Indeksiranost