Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1089191

An introduction to the multilayer network for characterisation of information spreading related to the COVID-19 crisis


Meštrović, Ana; Beliga, Slobodan; Babić, Karlo; Petrović, Milan; Martinčić-Ipšić, Sanda
An introduction to the multilayer network for characterisation of information spreading related to the COVID-19 crisis // Proceedings of the COSTNET COVID-19 Conference / Kauermann, Göran ; Reinert, Gesine ; Wit, Ernst (ur.).
Munich, Germany: Department of Statistics at LMU Munich, 2020. 8, 1 (predavanje, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 1089191 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
An introduction to the multilayer network for characterisation of information spreading related to the COVID-19 crisis

Autori
Meštrović, Ana ; Beliga, Slobodan ; Babić, Karlo ; Petrović, Milan ; Martinčić-Ipšić, Sanda

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
Proceedings of the COSTNET COVID-19 Conference / Kauermann, Göran ; Reinert, Gesine ; Wit, Ernst - Munich, Germany : Department of Statistics at LMU Munich, 2020

Skup
COSTNET COVID-19 Conference

Mjesto i datum
Online, 10.7.2020

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
multilayer network ; social network analysis ; information spreading ; fake news detection ; COVID-19

Sažetak
Communication in social media has been gaining importance in responses to major crises, such as COVID-19. In emergency situations, there is an urgent need to rely on trustworthy information. On the other side, we are all witnessing a huge amount of misinformation, fake news and conspiracy theories spreading in social media, especially during a crisis. The automatic recognition of information spreading patterns may improve various aspects of crisis communication, such as for example detection, prediction and preventing fake news spreading. The first step toward understanding the information spreading patterns is to perform a quantitative and qualitative analysis of textual information posted and shared in social networks. In previous research, it has already been shown that there are differences in spreading of fake news and true news. However, the COVID-19 crisis brings a whole new realm of challenges in terms of large communication volumes that results with massive datasets, new terminology, new aspects and new specific topics that have come into the focus. In this research, we propose a novel framework based on multilayer networks that enables information spreading characterisation. Our approach integrates social network analysis methods and natural language processing algorithms. Thus, the proposed framework capture three sets of information spreading features: (i) content, (ii) context and (iii) dynamic. One of the goals of this research is to define a classifier that can identify fake and truth news based on these features.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Projekti:
HRZZ-IP-CORONA-2020-04-2061 - Višeslojni okvir za karakterizaciju širenja informacija putem društvenih medija tijekom krize COVID-19 (InfoCoV) (Meštrović, Ana, HRZZ - 2020-04) ( POIROT)

Ustanove:
Sveučilište u Rijeci - Odjel za informatiku

Poveznice na cjeloviti tekst rada:

www.en.wisostat.statistik.uni-muenchen.de

Citiraj ovu publikaciju:

Meštrović, Ana; Beliga, Slobodan; Babić, Karlo; Petrović, Milan; Martinčić-Ipšić, Sanda
An introduction to the multilayer network for characterisation of information spreading related to the COVID-19 crisis // Proceedings of the COSTNET COVID-19 Conference / Kauermann, Göran ; Reinert, Gesine ; Wit, Ernst (ur.).
Munich, Germany: Department of Statistics at LMU Munich, 2020. 8, 1 (predavanje, međunarodna recenzija, sažetak, znanstveni)
Meštrović, A., Beliga, S., Babić, K., Petrović, M. & Martinčić-Ipšić, S. (2020) An introduction to the multilayer network for characterisation of information spreading related to the COVID-19 crisis. U: Kauermann, G., Reinert, G. & Wit, E. (ur.)Proceedings of the COSTNET COVID-19 Conference.
@article{article, year = {2020}, pages = {1}, chapter = {8}, keywords = {multilayer network, social network analysis, information spreading, fake news detection, COVID-19}, title = {An introduction to the multilayer network for characterisation of information spreading related to the COVID-19 crisis}, keyword = {multilayer network, social network analysis, information spreading, fake news detection, COVID-19}, publisher = {Department of Statistics at LMU Munich}, publisherplace = {Online}, chapternumber = {8} }
@article{article, year = {2020}, pages = {1}, chapter = {8}, keywords = {multilayer network, social network analysis, information spreading, fake news detection, COVID-19}, title = {An introduction to the multilayer network for characterisation of information spreading related to the COVID-19 crisis}, keyword = {multilayer network, social network analysis, information spreading, fake news detection, COVID-19}, publisher = {Department of Statistics at LMU Munich}, publisherplace = {Online}, chapternumber = {8} }




Contrast
Increase Font
Decrease Font
Dyslexic Font